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Chapter 1

Introduction and Overview

1.1 Introduction

CISM, the Community Ice Sheet Model, originates from the Glimmer and Glimmer–CISM
projects (Rutt et al., 2009)1. The current name reflects the project’s evolution from a stand-
alone ice sheet model to a fully supported, coupled component of the Community Earth System
Model, or CESM. CISM is a numerical model—a collection of software libraries, utilities and
drivers— used to simulate ice sheet evolution. CISM is modular in design and coded almost
entirely in standards-compliant Fortran 95. It currently supports two different dynamical cores
(“dycores”), which solve the equations for conservation of mass, energy, and momentum. As
with previous versions of Glimmer and Glimmer-CISM, the current version of CISM supports
a serial, shallow-ice representation of ice dynamics. New with CISM2 are support for “higher-
order” ice dynamics, scalable parallelism, and software links for coupling to modern, robust,
C++ based, third-party solver libraries.

1.2 Overview

CISM consists of several components:

• cism driver: the high-level driver (i.e., the executable) that is used to run the ice sheet
model. Unlike the drivers in previous versions of Glimmer and Glimmer-CISM, cism driver
is used to run the code in all model configurations (e.g., for idealized test cases with
simplified climate forcing and for model runs based on realistic geometries and climate
forcing data).

• Glide: the dynamical core based on shallow-ice dynamics. This component is responsible
for solving the governing conservation equations and determining ice velocities, internal
ice temperature, and ice geometry evolution (see Chapter 4). Apart from minor changes,
this is the same shallow-ice dynamical core used by Glimmer and Glimmer-CISM.

• Glissade: the dynamical core based on a first-order-accurate approximation of the Stokes
equations for ice flow. This dycore, like Glide, solves the governing conservation equa-
tions. Unlike Glide, Glissade is fully parallel in order to take advantage of modern, multi-
processor, high-performance architectures (see Chapter 6).

• Glint: the climate model interface. Glint allows the core ice sheet model to be coupled
to a variety of global climate models, or indeed any source of time-varying climate data
on a lat-lon grid.

1 Glimmer was originally an acronym for GENIE Land Ice Model with Multiply Enabled Regions, reflecting
the project’s origin within the GENIE (Grid ENabled Integrated Earth-system) model.

3
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4 CHAPTER 1. INTRODUCTION AND OVERVIEW

• Test cases: idealized test cases for the Glide and Glissade dynamical cores and for the
Glint climate interface. These are used to (1) confirm that the model is working as
expected and (2) provide a range of simple model configurations from which new users
can learn about model options and create their own configurations (see Chapter 8).

• Shared code: a number of modules shared by different parts of the code. Examples
include modules for defining derived types, physical constants, and model parameters,
and modules that handle parsing of the configuration file and data input/output (I/O),
as discussed below.

Each component is configured using a configuration file (*.config) similar to Windows .ini
files. At run-time, the model configuration is written to a log file.

1D, 2D, and 3D data are written and read to and from netCDF files using the CF (Climate-
Forecast) metadata convention2. NetCDF is a scientific data format for storing multidimensional
data in a platform- and language-independent binary format. The CF conventions specify the
metadata used to describe the file contents. Many programs (e.g., Python, Matlab, OpenDX,
Ferret, and IDL) can process and visualize netCDF data.

2http://cfconventions.org/

http://cfconventions.org/
http://cfconventions.org/


Chapter 2

Installing CISM

2.1 Getting and Installing CISM

CISM1 is a relatively complex system of libraries and programs which build on other libraries.
This section documents how to download and install CISM and its prerequisites. Many common
problems and questions can be addressed using the user discussion boards2 . A CISM users mail-
ing list is also available and can be subscribed to by sending an email to cism-users@googlegroups.com3.
Please report unresolved problems using the bug reporting facility at the CISM Github website4.

CISM is distributed as source code, and a reasonably complete build environment is there-
fore required to compile the model. For UNIX and LINUX based systems (including Mac),
the CMake build system is used to build the model. Sample build scripts for a number of
standard architectures are included, as are working build scripts for a number of large-scale,
high-performance-computing architectures (e.g., Yellowstone (CISL), Titan (OLCF), and Hop-
per (NERSC) ).

There are two ways to get the source code:

1. Download5 a released version of the code as an archive (.zip or .tar.gz file).

2. Clone the code from the CISM Github repository6 using the following command: git

clone https://github.com/CISM/cism.git (It is also possible to clone the repository
using the SSH protocol if you have an SSH keypair generated on your computer and
attached to your GitHub account. See the CISM Github repository webpage and Github’s
help pages for more information.)

For beginners, downloading a zip archive of the latest release tag is recommended. More
experienced users may want to download directly from the repository, as it will make updating
the code easier in the future.

In either case, a Fortran90 compiler is required. Other software dependencies include the
netCDF library (used for data I/O) and a Python distribution (used to analyze dependencies
and to automatically generate parts of the code) with a number of specific Python modules.
Users who want to run the code in parallel will need to install MPI, and users who want access
to the Trilinos solver library will need to download and build Trilinos, and link to it when

1http://oceans11.lanl.gov/cism/
2http://forum.cgd.ucar.edu/forums/ice-sheet-modeling-cism
3In order to subscribe from a non-Google email address, you should first make sure to completely log out from

any Google sites (e.g., Gmail) before sending your request. If you do not, it will automatically try to associate
your request with your Gmail account instead.

4https://github.com/CISM/cism/issues
5https://github.com/CISM/cism/releases
6https://github.com/CISM/cism

5
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6 CHAPTER 2. INSTALLING CISM

building CISM. Finally, you will need CMake and Gnu Make to compile the code and link to
the various third-party libraries.

If you have not done so already, clone a tagged version of CISM or download an archive
of the code, as noted above. Store the code or the unzipped/untarred archive in a location
of your choice. More detailed build instructions, including instructions for the installation of
supporting software, are given below.

2.2 Installing Supporting Software for Basic (Serial) CISM

Because the build process can be fairly complicated, we describe it in detail below, relying on
the use of a package manager to handle many of the standard software dependencies. For each
step we give specific instructions for both Mac OS X using MacPorts (in red boxes) and Linux
(in blue boxes). For the latter, we have verified that the instructions work for Ubuntu 12.10
and 14.04 LTS. For different but related systems, hopefully these instructions can be used as a
guide.

CISM can be installed in either a serial or parallel configuration. The parallel mode allows
the model to be run on multiple processors which can greatly speed up execution. This is a
common configuration to use on supercomputing clusters, but can also be convenient on modern
desktops and laptops which often have four or more cores available. However, the parallel build
requires additional supporting software, so we first detail how to build serial CISM. For new
users, it is recommended to first build and successfully run serial CISM before moving on to
the parallel build.

Note: Glide, the shallow-ice dycore, can only run on a single processor, even when the code
is built with full parallel support. This is also true of the SLAP solver routines.

The instructions below assume the user has administrative privileges for installing new
software (note the extensive use of sudo). If you are working on a shared machine without
administrative privileges, you might proceed by assuming all needed packages are present and
continue to the CISM installation section. If you encounter problems, you can refer back to this
section to determine which packages might be missing or problematic before contacting your
system administrator.

Mac OS X

As mentioned above, we will take advantage of MacPorts, a software package manager
for Macs. This will allow us to install most of the base level software libraries needed by
CISM with few complications.

Go to http://www.macports.org/install.php, where you will find a range of ”.pkg”
installs available, including those for Mountain Lion, Lion, and Mavericks versions of Mac
OS X.

Installing MacPorts requires installing the Xcode developer toolset provided by Apple.
Details of how to obtain Xcode vary by version of OS X. See MacPorts installation in-
structions and this link for details. Once Xcode is installed, you may need to additionally
download the “command line tool” from the Preferences / Downloads menu of Xcode.

Depending on computer security settings at your institution (firewalls, etc.), you may
need to add proxy information so that Macports can communicate and download soft-
ware from the outside world. All Macports software will be installed under /opt/local/
by default. To add proxy information, after installing Macports, edit the configuration
file at /opt/local/etc/macports/macports.conf. (Note this is probably a read-only
file that requires superuser permission to edit, so you will need to edit the file with
something like: sudo vim /opt/local/etc/macports/macports.conf). By searching
for the text string “proxy”, you will find the lines like proxy http hostname:12345

near the bottom of the file. Enter your proxy information here as appropriate (e.g.,

http://www.macports.org/
http://www.macports.org/install.php
https://developer.apple.com/xcode/downloads/
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hostname:your host info here).
If you have previously installed Macports but not updated it recently, it’s generally a

good idea to do so. Ideally, this should be done with admin or root privileges (you will
be prompted to enter your password) using:

sudo port selfupdate

You will then be prompted to update any installed ports that are outdated, which you
can do using:

sudo port upgrade outdated

To search for available software in Macports, type:
port search software-name

Software is installed through Macports using the command:
sudo port install software-name

Additional Macports tips will follow inline below. Extensive documentation for Macports
can be found at the Macports website.

Ubuntu 12.10

This Ubuntu instructions describe setting up supporting software and CISM in a Linux
environment. These instructions were written using a fresh installation of Ubuntu 12.10
but steps should be very similar in other versions of Ubuntu or other distributions of
Linux. Instructions make use of the command line tool for installing packages that comes
with Ubuntu, apt-get. Other package management tools (e.g., Software Center) could
also be used.

It’s generally a good idea to synchronize your local package index files before installing
new software using apt-get:

sudo apt-get update

To search for available packages, type:
apt-cache search software-name

And to see detailed information about a package, type:
apt-cache show software-name

Packages are installed through apt-get using the command:
sudo apt-get install software-name

Some users have reported that BLAS and LAPACK libraries need to installed explicitly,
for example when starting from a “clean” machine. To do this, use the following two
commands:

sudo apt-get install libblas-dev

and
sudo apt-get install liblapack-dev

Additional apt-get tips will follow inline below. Extensive documentation for apt-get can
be found at the Ubuntu website and through man pages (man apt-get).

2.2.1 Install git version control software

If you intend to download the CISM code as a git repository, you will need the git package
installed. If you prefer to download a zipped archive of the code, this step can be skipped.

Mac OS X

Install git with:
sudo port install git

http://guide.macports.org
https://help.ubuntu.com/community/AptGet/Howto
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Ubuntu 12.10

Install git with:
sudo apt-get install git

2.2.2 Install the GCC compiler suite

The GCC compiler suite contains compilers for C, C++, and, optionally, Fortran. Fortran and
C compilers are required for serial CISM, and a C++ compiler is also needed for parallel CISM.
CISM is known to work with GNU gfortran compilers, Intel ifort, and PGI. In these instructions
we will use GNU compilers because they have been extensively tested with CISM and are freely
available. Advanced users are welcome to use other compilers of their choosing.

CISM has been tested extensively with gfortran versions 4.5 and 4.6. Newer (or older)
versions may also work, although version 4.8 introduces new features that may uncover issues.

Mac OS X

Searching for gcc with port search gcc will return:
gcc44 @4.4.7 (lang)

The GNU compiler collection

...

in addition to a lot of other information on available Macports installs related to the
GCC (Gnu) compiler suite.

Where possible, we want to make sure that all other software we build and install with
Macports uses the version of GCC we choose to install. To date, we’ve had success with
GCC 4.6.3 (others may work as well but have not been tested). To install GCC 4.6.3
type:

sudo port install gcc46

You will see some verbose output telling you what is happening (downloading packages,
expanding them, building, installing, checking, etc.). When the install is complete, you
can type:

port installed

to see what packages you currently have installed. You should see something like gcc46
4.6.3 3 (active). (The minor version numbers after the “4.6” may differ as MacPorts
makes updates to the port.) You will likely also see other packages that have been installed
(software dependencies for GCC that were automatically installed by MacPorts and/or
other ports you have manually installed).

The “(active)” description identifies which version of a particular package Macports
currently thinks you want to use (e.g., you could also have another older GCC suite
installed). To make sure the newly installed version is active, you would type:

port select gcc

which will return something like:

Available versions for gcc:

gcc40

gcc42

mp-gcc46 (active)

none

This confirms that GCC 4.6 is active (the mp indicates a Macports version). It is
possible that gcc46 will be listed as active when you type port installed, but that mp-
gcc46 will not be listed as active when you type port select gcc. If mp-gcc46 is not
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active as shown above, then you will need to select it using:

sudo port select --set gcc mp-gcc46

This will ensure that any generic call to gcc, gfortran, g++, will point to the libraries
just installed.

Ubuntu 12.10

GNU compilers may have come with your Linux distribution. If not, they need to installed.
Ubuntu 12.10 comes with gcc installed but not gfortran.

Install gfortran with:
sudo apt-get install gfortran

2.2.3 Install build tools

Additional tools are needed for managing the build process. make (specifically, GNU’s gmake)
usually comes with Mac and Linux distributions, but if not it should be installed. Additionally,
CISM uses the CMake build utility (a cross-platform, open-source build system).

Mac OS X

While you probably already have a version of make on your system, it may be out of date
or conflict with other Macports installed software. The required versions for CISM can
be installed through Macports with this command:
sudo port install gmake cake

In addition to the software installed above, you should now see something like the
following when you type port installed:

gmake @3.82_0 (active)

cmake @2.8.10_1 (active)

Ubuntu 12.10

On Ubuntu (and other Debian systems) there is usually a package called build-essential

that includes a large collection of tools and libraries that are typically necessary for
compiling code. Install these tools and CMake with:

sudo apt-get install build-essential cmake cmake-curses-gui

2.2.4 Install netCDF

NetCDF stands for “network Common Data Form” libraries, which are a machine-independent
format for representing scientific data. This is required by CISM for performing input/output.
The netCDF package you install must include Fortran libraries for CISM to compile (in some
package managers, the Fortran libraries are in a separate package). There are substantial
differences between versions 3.x and 4.x of netCDF, but both version series should work with
CISM. It is also possible to download and compile netCDF libraries manually, which may be
preferred by advanced users wanting to use a specific version.

It is also recommended that you install optional tools for working with netCDF datafiles.
ncview is a convenient tools for viewing netCDF files. (Some alternatives are to write Python or

http://www.cmake.org/
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
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Matlab scripts or to use another tool like Paraview or Ferret.) NCO (“netCDF Operators”) is a
toolkit of command line tools for manipulating and analyzing data stored in netCDF-accessible
formats.

Mac OS X

To install NetCDF, use sudo port install netcdf-fortran +gcc46. Note that there
are other versions of NetCDF available to install. It is important to choose the one
with the “Fortran” extension. The “gcc46” syntax specifies a port “variant”. This tell
Macports that, if there is a version of the selected software to install that is consistent
with the GCC 4.6 compiler suite, then it should choose that one. Typing port installed

should now include:
netcdf @4.3.2_0+dap+gcc46+netcdf4 (active)

netcdf-fortran @4.2_12+gcc46 (active)

The “dap+gcc46+netcdf4” comes along automatically.
Optional but recommended: Tools for working with netCDF data files.
sudo port install ncview nco

If you encounter an ‘unable to open display’ error when running ncview, you may
need to install a newer version of the X Window System than the one provided by Apple.
We have had success using the latest version of XQuartz: http://xquartz.macosforge.org

Ubuntu 12.10

Install netCDF libraries with:
sudo apt-get install libnetcdf-dev

Optional but recommended: Tools for working with netCDF data files.
sudo apt-get install netcdf-bin ncview nco

2.2.5 Install Python and related modules

Python is used by CISM to autogenerate I/O code during compilation, and is also used by most
test case scripts to set up initial conditions and analyze and plot results. Only Python 2.7 has
been tested. Python 3 may work for some uses but is likely to generate errors due to extensive
changes between versions 2 and 3. Also, CISM uses a number of python modules:

• numpy - required for generating many test case initial conditions

• matplotlib - used by some plotting scripts. Not strictly necessary but required for those
scripts to work properly.

• a python netCDF I/O module. Options are netCDF4, Scientific.IO.NetCDF, or PyCDF.
netCDF4 is the ideal choice, but it is often not available through Linux package managers
and must be installed through a python package manager like pip, or manually. PyCDF is
the least recommended option here because it is not entirely compatible with the others.
Scientific.IO.NetCDF is usually available through Linux package managers.

Mac OS X

While Mac OS X already comes with a working Python distribution, we will need addi-
tional modules that can sometimes be tricky to get working together correctly. We have
successfully used both the Enthought Python distribution (which is free for people asso-
ciated with a university) and a version installed using Macports. To obtain and install

http://ferret.pmel.noaa.gov/Ferret/home
http://nco.sourceforge.net/
http://xquartz.macosforge.org
https://www.enthought.com/products/epd/
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Enthought, click on the link above and follow their directions. To install version 2.7 using
Macports, along with the necessary additional modules, do the following:

sudo port install python27 py27-numpy py27-matplotlib py27-scientific

py27-netcdf4

The existence of two versions of python on your system can lead to confusion. It is
important that you leave the version of python that came supplied by Apple so that your
system has access to it. However, you will want to be sure that CISM has access to the
new, more modern version of python you have installed. In our experience, this can be
one of the most problematic parts of the installation process. You can use port select:

sudo port select python python27

You can check that Macports python is used by default by typing:
which python

and you should see: /opt/local/bin/python. If you instead see /usr/bin/python then
the default Apple python is still the version that is being used on the command line. If
this happens, or if you encounter errors with this setup, an alternative approach is to
modify the PATH variable in your .bashrc or similar environment settings script to make
sure that /opt/local/bin is before /usr/bin in your path.

Ubuntu 12.10

Python generally comes with most Linux distributions. If it is not present, it must be
installed. Often, there is an additional python development package that is necessary
when working with compiled code (tpyically called python-dev on Ubuntu).

Install python modules with:
sudo apt-get install python-dev python-numpy python-matplotlib

python-scientific

Optional: Installing netCDF4 python module.
Install pip (a tool for installing and managing Python packages):

sudo apt-get install pipa

Next, install HDF5 using pip:
sudo apt-get install libhdf5-dev hdf5-tools hdf5-helpers flex

Finally, install netCDF4 using pip:
sudo -E pip install netcdf4

aFor Ubuntu 14.04 there is a known issue with pip and handling freetypes. This can be fixed using
sudo apt-get install libfreetype6-dev libxft-dev.

2.3 Building Serial CISM

At this point we are ready to build a serial version of CISM and its linked libraries. While we
ultimately want to build a version of the code that also runs in parallel, it is often useful to stop
at this step to make sure everything is working. Then, if problems occur during the parallel
build process (as they sometimes do), we know those problems have occurred only during the
last step of the process.

If you have not already done so, obtain the source code following the instructions above
in section 2.1. Below, all paths starting with ./ indicate the root level of the source code
directory. E.g., if you expanded your tar.gz archive into a main source code directory with the
path /usr/JohnDoe/CISM, the ./ refers to the path /usr/JohnDoe/CISM/.

Unlike previous versions of the code, the build system is now entirely based on CMake
(Autotools is no longer used).

Build scripts are provided that should work for most standard Mac and Linux setups, as
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well as some supercomputing platforms on which CISM is commonly run. All build scripts are
located in the ./builds directory from the root level of the code. In general, change to the
subdirectory that most closely matches your system and intended build.

If you encounter an error when using the included scripts, you may need to modify some
details, such as the location of your NetCDF libraries or your compiler names. Other errors you
might encounter may indicate that some of the supporting software (above) is missing.

Mac OS X

On a Mac, you should be able to build the code by doing the following:
1. Change to the ./builds/mac-gnu directory from the root level of the code.

2. Configure the build using source mac-gnu-serial-cmake

3. Build the code using make -j X, where the “X” refers to the number of processors
available for use in the build (or just make if you have only one processor).

Ubuntu 12.10

On a Linux platform, you should be able to build the code by doing the following:
1. Change to the ./builds/linux-gnu directory from the root level of the code.

2. Configure the build using source linux-gnu-serial-cmake

3. Build the code using make -j X, where the “X” refers to the number of processors
available for use in the build (or just make if you have only one processor).

When the build completes, you can check for the executable driver by typing ls cism driver

from within the current build directory (here, from within the ./builds/mac-gnu or ./builds/linux-gnu/
directory). The file cism driver is the executable you will link to when running the model,
which is generally done using a symbolic link. For example, from the ./tests/higher-order/shelf/
directory, one would link to this executable using,

ln -s ../../../builds/mac-gnu/cism_driver/cism_driver ./

Chapter 8 discusses running the executable for standard test cases.
Advanced users may want more control over the build scripts. There are a number of

build options used by CMake to customize the build. You can manually modify the build
scripts included with the code, or use the tool ccmake to interactively adjust build options
(type ccmake ../../ from any build directory after having run the configure script once). The
available options are listed in Table 2.1. Many of these options pertain to the parallel build
which is discussed in more detail below.

Also, there are standard CMake options that can be set (e.g., CMAKE C COMPILER, CMAKE Fortran COMPILER,
etc.). Many of these are explained in the CMake documentation.

2.4 Installing Supporting Software for Parallel CISM

To build parallel CISM, MPI compilers and libraries are required. Only the higher-order dycore
(Glissade) can run in parallel. (There is also a higher-order dycore called Glam that can be
run in parallel, but it is used for development and testing and is not supported for scientific
applications.)

In addition, you may choose to include the Trilinos package of external solver libraries.
These are not required, but for some problems Trilinos may provide better performance and

http://www.cmake.org/Wiki/CMake_Useful_Variables
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CISM BUILD CISM DRIVER Toggle to build cism driver, on by default
CISM BUILD EXTRA EXECUTABLES Toggle to build other executables, off by default
CISM COUPLED Toggle to build CISM for use with CESM, off by

default
CISM ENABLE BISICLES Toggle to build a BISICLES-capable cism driver, off

by default
CISM FORCE FORTRAN LINKER Toggle to force using a Fortran linker for building

executables, off by default
CISM GNU Toggle to set compilation flags needed for the gnu

compiler, off by default
CISM INCLUDE IMPLICIT LINK LIB Toggle to explicitly include the

CMAKE Fortran IMPLICIT LINK LIBRARIES on
the link line, on by default

CISM MPI MODE Toggle to configure with MPI, on by default
CISM NETCDF LIBS netCDF library name(s)
CISM NO EXECUTABLE Set to ON to just build libraries, off by default
CISM SERIAL MODE Toggle to configure in serial mode: off by default
CISM SOURCEMOD DIR Path to SourceMod directory of F90 files to replace

CISM files
CISM STATIC LINKING Toggle to set static linking for executables, off by

default
CISM USE DEFAULT IO Toggle to use default i/o files rather than running

python script, off by default
CISM USE GPTL INSTRUMENTATION Toggle to use GPTL instrumentation, on by default
CISM USE MPI WITH SLAP Toggle to use mpi when using SLAP solver, only rel-

evant if CISM SERIAL MODE=ON, off by default
CISM USE TRILINOS Toggle to use Trilinos external solver libraries, on by

default
CMAKE VERBOSE CONFIGURE Verbose CMake configuration, on by default

Table 2.1: Available CMake settings for configuring the CISM build process
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stability than the native solvers. Trilinos can also technically be used with a serial build, but
this configuration is not supported or recommended.

2.4.1 Install MPI

MPI (Message Passing Interface) libraries and compilers are necessary for compiling parallel
CISM. These libraries are used for handling parallel communications when running the code
on multiple processors. A more complete description of parallel model configurations is given
in Chapter 7. (For example, some test cases and configurations when running the shallow-
ice dycore are not fully supported in parallel). OpenMPI and MPICH are two common MPI
implementations.

Mac OS X

It is likely that you already have versions of MPI installed on your system, but they may be
out of date or not compatible with the other libraries we have and will be installing. Using
Macports, the MPICH version of MPI is known to work when building CISM. (OpenMPI
may also work, but we’ve seen more consistent success on Macs with MPICH.)

First, check Macports for available versions of MPICH using port search mpich*.
We want the version that is compatible with our GCC compiler suite, so we type:
sudo port install mpich-devel-gcc46 +fortran

To make sure this is active, type

port installed mpi*

which should return

mpich-devel-gcc46 @3.2a1_0+fortran (active)

As when installing the GCC compilers, we want to make sure any generic call to MPI
points to MPICH. This can be done with the following command:

sudo port select --set mpi mpich-devel-gcc46-fortran

Ubuntu 12.10

Either OpenMPI or MPICH are likely to work with CISM on Linux machines. On Linux
machines, we have tested OpenMPI more thoroughly. Install OpenMPI with:

sudo apt-get install openmpi-bin

2.4.2 Install Trilinos solver libraries

Trilinos is a modern, open source, C++ based library of parallel nonlinear and linear solvers,
preconditioning and mesh-partitioning tools, and much more. It can be downloaded here7.
(The software is free, but you are required to enter your email address to download it.) The
documentation below assumes that you are working with version 11.10.* and was specifically
tested using version 11.10.2.

Building Trilinos requires CMake version 2.8 or later, which ideally you have already installed
as discussed above. Trilinos is not needed to run the default parallel, higher-order dycore

7http://trilinos.org/download/

http://trilinos.org/download/
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(Glissade), but it may be useful for more difficult problems or for debugging in cases where the
native Fortran solvers fail to converge.

The build instructions for Trilinos on Mac and Linux are very similar, so users of both
systems can follow the primary instructions below, except where noted.

Trilinos requires both (1) an “out-of-source build” and (2) an “out-of-build installation”.
This means that you cannot build the code in the same directory where the source code lives, and
you cannot install the libraries in the same directory where you build the code. (Older versions
of Trilinos required an out-of-source build but not an out-of-build installation.) The easiest way
to satisfy this requirement is to have separate “source”, “build” and “install” directories in the
location where you want to install the code. For example, in /usr/local/, you could set up
the following three directories:

trilinos-11.10.2-Source/

trilinos-11.10.2-Build/

trilinos-11.10.2-Install/

The “source” directory will be created on its own when you uncompress the tar.gz archive
that you download. You do not have to keep the source code where you build and install the
Trilinos libraries, but you will need to remember the path to where that source code lives on
your computer.

To configure the Trilinos build, you will need to execute a CMake configure script. Sample
configure scripts for a number of standard platforms are included in the “sampleScripts” direc-
tory under the root level of the Trilinos source code. Also, the CISM code includes examples of
Trilinos configure scripts (“do-configure”) for use with CISM for both Linux and Mac platforms
in the ./utils/trilinos config scripts examples directory. We recommend starting with
one of those scripts and modifying it as necessary to work on your system8.

The paths to both the “source” and “install” directories are specified within the “do-
configure” scripts. In these instructions, those directories are both assumed to live within
/usr/local/, but other locations are fine to use too (e.g., in your home/User directory).

Mac OS X

Also note the explicit path in the MPI lines, e.g.,
-D MPI_EXEC="/opt/local/mpiexec" \

Since some Macs may come with their own pre-installed OpenMPI libraries, it is
important here to specify the path to the version we previously installed using Macports.

Find the example script most appropriate for your system, copy it to the trilinos-11.10.2-Build
directory, and modify it if necessary (e.g., adjust paths, compiler locations, etc.). Execute it
with:

source ./do-cmake9

from within your trilinos-11.10.2-Build directory. Depending on where you are building
and installing the code, you may need to have administrative privileges (in which case you
would type sudo source ./do-cmake). If the configure step was successful, you should see the
following displayed on your screen:

...

Processing enabled package: [PACKAGE NAME]

8If you are following the above installation instructions for Mac exactly, then the configure script
./utils/trilinos config scripts examples/do-configure-Trilinos-11.10.2-for-Mac-10.9.4 should work
with few modifications.

9Here we have assumed that the name of the configure script is “do-cmake”. The script name may
differ depending on what you have called it or if you copied and modified one of the scripts from
./utils/trilinos config scripts examples.
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...

Exporting library dependencies ...

Finished configuring Trilinos!

-- Configuring done

-- Generating done

-- Build files have been written to: /usr/local/trilinos-11.10.2-Build

It is a good idea to scan the output while the “do-cmake” script is executing, for example to
ensure the configure process is picking up the compilers you specified (e.g., it is using the Mac-
ports versions as opposed to some Mac default versions that might also be on your system). Once
the code is configured successfully, build the libraries from within the trilinos-11.10.2-Build
directory by typing:

make (or sudo make if necessary)
For multiprocessor machines, the build process can be sped up significantly using the “-j”command
as described above for building serial CISM:

make -j X

where “X” is the number of cores available on your machine (e.g., make -j 4 for a 2-processor,
dual-core machine).

Building Trilinos can take a long time (e.g., an hour or more), depending on your machine,
the number of processors used for the build, and the number and type of libraries you are
installing. Once you have built the code, we highly recommend testing it using:

make test

(The Trilinos ENABLE TESTS:BOOL variable in the do-cmake script can be set to “OFF”to
disable building of the tests.) Screen output will tell you if and how many tests failed. We have
seen a few tests fail while still having a perfectly good and working Trilinos library. In general,
if the number of tests passed is above 90%, the library will likely work fine with CISM. Query
the CISM users or developers lists10 if you have questions about specific Trilinos tests failing.

Mac OS X

On a Mac, MPI tests have been known to trigger a dialog box from the firewall. With more
than 300 tests, these messages popping up continually can make it impossible to use your
computer until the tests complete. To keep them from appearing, you can temporarily
turn off your firewall under “System Preferences” (Security > Firewall > Stop). Be sure
to turn the firewall back on when the tests are complete!

After running the tests, you will need to install Trilinos using:
make install

This will build the actual Trilinos libraries in the path specified in the

-D CMAKE_INSTALL_PREFIX:PATH=/path

line of your “do-cmake” script (above). For this example, those libraries will be installed in:
/usr/local/trilinos-11.10.2-Install

After successfully building Trilinos, create an environment variable called CISM TRILINOS DIR

so the CISM build process can find the Trilinos installation. For example, if you are using the
bash shell and your current directory is the Trilinos install directory, you can do:

export CISM_TRILINOS_DIR=$PWD

10cism-users+subscribe@googlegroups.com -or- cism-devel+subscribe@googlegroups.com

mailto:cism-users+subscribe@googlegroups.com
mailto:cism-devel+subscribe@googlegroups.com
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You may prefer to modify your .bashrc or .bash profile (or similar) to set this environment
variable on every login.

Alternatively, you can modify the CISM parallel build script (below) so that the line:

-D CISM_TRILINOS_DIR=$CISM_TRILINOS_DIR \

is set to the Trilinos installation directory.

2.5 Building Parallel CISM

The procedure for building parallel CISM is nearly identical to the serial build (above). The
build script for parallel CISM for a Mac is located at builds/mac-gnu/mac-gnu-cmake, while
the build script for Linux is located at builds/linux-gnu/linux-gnu-cmake. From the appro-
priate directory, run:

source mac-gnu-cmake or source linux-gnu-cmake

Once the configuration step completes successfully, you can compile the code as before with:
make

or
make -j 4

if you have 4 processors available (or as many processors as you would like to use). See Section
2.3 for details about customizing the build process.

Building a parallel version of CISM that includes Trilinos requires setting the

-D CISM_USE_TRILINOS

flag to ON in the builds/mac-gnu/mac-gnu-cmake script.

2.6 Next Steps

If you make any changes to the source code, you only need to re-run make from your build
directory to generate an updated executable. One exception is that if you edit the lists of
input/output netCDF variables in * vars.def files (see Appendices A and B), you need to first
re-source the configuration script (e.g., source mac-gnu-cmake) before re-running make.

Now that you have successfully built the code, you can proceed to Chapters 3 and 5 to learn
more detailed information about ice sheet modeling, to Chapters 4 and 6 to learn more about
the various model approximations available through CISM, or you can proceed to Chapter 8 to
learn how to run and examine some standard model test cases.
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Chapter 3

Introduction to Ice Sheet
Modeling: Derivation of Field
Equations

In this chapter we give an introduction to ice dynamics and the other conservation equations
that must be accounted for when simulating glacier and ice sheet evolution.

Ice sheets are key components of Earth’s climate system. They contain nearly all of the
planet’s fresh water; changes in their volume have an immediate effect on sea level; changes in
their area and surface characteristics affect global albedo; and they play a role in the circulation
of both the atmosphere and the ocean. Through the latter half of the Quaternary Period, ice
sheets have modulated the planetary response to orbitally-driven insolation cycles. Looking
forward, the Greenland and Antarctic ice sheets have the potential to play important roles in
climate change.

A numerical model is a discrete approximation of a continuous process. The approximation
is discrete, due to both the finite nature of a computer’s precision and the finite problem size
that can be tackled using a computer. The underlying process is continuous because it is
commonly formulated in terms of ordinary or partial differential equations (ODEs and PDEs,
respectively). Numerical models cannot be “solved” until the boundary and initial conditions
are specified. Such models may be very simple, such as a harmonic oscillator, or very complex,
as in a complete Earth System Model (ESM). In general, ESMs are composed of a number of
component models, of which land ice (encompassing glaciers, ice caps, and large ice sheets) is
but one component (with atmosphere, ocean, sea ice, and land surface models being the other
primary components).

3.1 Conservation Equations

For the majority of the physical systems encountered in Earth science problems, the first step
in modeling is a mathematical description of the conservation of energy, momentum, and mass.
Only after that description is laid out do we turn to the question of approximating those
equations in a form that can be solved on a computer.

3.1.1 Integral form

The mathematical formulation of conservation can be arrived at by considering the change in
a quantity ϕ that is known within a control volume V . The control volume is enclosed by a
surface S, with the outward positive unit vector n̂, normal to S.

19

http://en.wikipedia.org/wiki/Harmonic_oscillator
http://en.wikipedia.org/wiki/General_Circulation_Model
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Figure 3.1: Diagram of control volume and associated quantities.

The value of ϕ within V may change over time if:

1. There is a flux of ϕ through S. The flux is partitioned into two parts, one due to diffusion
and another due to advection.

2. ϕ is created or destroyed within V .

Formally, the time rate of change in ϕ within V is written:

∂

∂t

∫
V

ϕdV = −
∫

S

F·n̂ dS −
∫

S

ϕu·n̂ dS +

∫
V

RdV (3.1)

where F represents the flux due to diffusion (F ∝ ∇ϕ), ϕu represents a velocity field advecting
ϕ, and R represents a source (or sink) of ϕ. Vector quantities are represented in boldface. The
negative signs in front of the first two terms on the right-hand side indicate that an outward
flux results in a decrease in ϕ within the volume enclosed by S.

This statement of conservation of ϕ in the unit volume V is always true, independent of the
size of V and even if the fields enclosed by S are not continuous (this is the case because we
integrate over V ). It is important to note that that any information on spatial scales smaller
than V is lost in the process of integration.

3.1.2 Derivative form

Numerical models are often easier to formulate from the derivative form of the conservation
equation, and this is more often the form in which conservation equations are written. This
requires the derivatives of ϕ to exist within V , which in turn allows the integral form of the
conservation equation to be written as partial differential equations, which are upheld within
the control volume.

Begin with the terms describing diffusive and advective fluxes into or out of the control
volume. The divergence theorem states that∫

S

F·n̂ dS =

∫
V

∇·F dV. (3.2)

Here and below, we will alternate between standard vector notation (as above) and index
notation, where a single subscript indicates a component of a vector, two different subscripts

http://en.wikipedia.org/wiki/Diffusion
http://en.wikipedia.org/wiki/Advection
http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Index_notation
http://en.wikipedia.org/wiki/Index_notation
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indicate a tensor quantity, and two repeated subscripts indicate summation. Thus, an identical
way of writing equation (3.2) is ∫

S

Fj nj dS =

∫
V

∂Fj

∂xj
dV. (3.3)

Using the divergence theorem, the surface integrals over fluxes in (3.1) may be replaced by

−
∫

S

F·n̂dS −
∫

S

ϕu·n̂dS = −
∫

V

∇· (F + ϕ u) dV. (3.4)

Assuming that the coordinate system is stationary with respect to the velocity field u (i.e,
assuming an Eularian reference frame), it is possible to write

∂

∂t

∫
V

ϕ dV =

∫
V

∂ϕ

∂t
dV (3.5)

The integral form of the conservation equation can now be written as∫
V

{
∂ϕ

∂t
+ ∇· (F + ϕu) − R

}
dV = 0 (3.6)

Because V is an arbitrary volume, this equation can be true only if the term in brackets is zero
for the volume. Hence, for any volume having continuously differentiable ϕ,

∂ϕ

∂t
+ ∇· (F + ϕu) − R = 0. (3.7)

This is the general form for all conservation laws in continuum mechanics. Below, we apply
this equation to the three quantities conserved in an ice sheet (and ideally, in an ice sheet
model): mass, energy, and momentum.

3.2 Applications of the General Conservation Equation

3.2.1 Conservation of momentum

Starting from Newton’s second law of motion, conservation of momentum is expressed as

d

dt

∫
V

ρui dV =

∫
V

∂σij

∂xj
dV +

∫
V

ρgi dV (3.8)

where t is time, ρ is density, u is velocity, σij is the stress tensor, g is the acceleration due to
gravity, V is the volume of an arbitrary fluid element, and (i, j) = {x, y, z} in a Cartesian coor-
dinate system. Equation (3.8) tells us that a fluid element of arbitrary size experiences a “body

force” ρgiδV due to gravity, which is balanced by stress divergence
∂σij

∂xj
δV and acceleration of

the fluid in the volume δV .
Making the assumptions that we have continuous fields and that ice is incompressible (i.e.,

its density ρ does not change under conditions of interest), we can write

ρ
Dui

Dt
=

∂σij

∂xj
+ ρgi (3.9)

in which D is a material derivative. Because the Froude number for ice flow is extremely
small, the acceleration term (the first term on the left-hand side) can be neglected, leaving the
steady-state form,

∂σij

∂xj
+ ρgi = 0. (3.10)

http://en.wikipedia.org/wiki/Froude_number
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Equation (3.10) states that the body force (the gravitational driving force) is balanced by
forces resulting from gradients in the stress tensor σij . All models of ice-flow dynamics are
based on solving this equation in some form. Chapters 4 and 6 provide additional details on
the approximations to this equation that are solved by CISM.

The stress tensor σij has nine components in a three-dimensional, Cartesian coordinate
system,

σ =

∣∣∣∣∣∣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz.

∣∣∣∣∣∣ (3.11)

Since σij is symmetric, only six of these components are independent. The components along the
diagonal are called normal stresses, and the off-diagonal components are called shear stresses.
Deformation results not from the full stress but from the deviatoric stress,

τij = σij − 1

3
σkkδij , (3.12)

in which δij is the Kroneker delta (or the identity tensor). For shear stresses, (3.12) indicates
that the full and deviatoric stresses are identical.

Constitutive relationship

To relate the stress tensor to fluid motion, we introduce the strain rate tensor,

ϵ̇ij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = x, y, z, (3.13)

where ui are the velocity vector components. The strain rate tensor ϵ̇ij , and hence gradients in
the velocity field, are related to the stress tensor τij by a constitutive relation. For a Newtonian
fluid, this can be expressed as

τij = ηϵ̇ij , (3.14)

which states that the strain rate is proportional to the stress, with the ice viscosity η serving as
the constant of proportionality. Ice does not behave as a Newtonian fluid, and instead exhibits
a power-law rheology, so that it becomes more fluid (less viscous) the faster it deforms. This
relationship can be expressed through Nye’s generalization of Glen’s flow law,

τij = A(T ∗)
−1
n ϵ̇

1−n
n

e ϵ̇ij (3.15)

in which T ∗ is the absolute temperature corrected for the pressure dependence of the melt
temperature, ϵ̇e is the second invariant (a norm) of the stress tensor, and the power-law exponent
n is commonly taken as 3. A comparison of (3.14) and (3.15) indicates that one can define an
“effective” ice viscosity for (3.14) as

ηe = A(T ∗)
−1
n ϵ̇

1−n
n

e . (3.16)

The temperature-dependent rate factor A follows the Arrhenius relationship

A (T ∗) = EAoe
−Q/RT∗

, (3.17)

in which Ao is a constant, Q is the activation energy for crystal creep, R is the gas constant,
and E is a tuning parameter, which can be used to account for the effects of impurities and
anisotropic ice fabrics. The homologous temperature is

T ∗ = T + ρgHΦ, (3.18)

in which Φ is 9.8 ×10−8 K Pa−1, or about 8.7 ×10−4 K m−1 in ice. The pressure-dependent
melt temperature is simply the triple point temperature minus the product ρgHΦ.

http://en.wikipedia.org/wiki/Stress_tensor
http://en.wikipedia.org/wiki/Constitutive_equation
http://en.wikipedia.org/wiki/Power-law_fluid
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3.2.2 Conservation of energy

The first law of thermodynamics is used to make a basic statement of conservation of energy in
a volume of ice V enclosed within a surface S:

d

dt

∫
V

E dV = −
∫
S

F · n̂ dS −
∫
S

Eu · n̂ dS +

∫
V

WdV (3.19)

in which E is the total energy within the volume, Fi is the energy flux due to diffusion, and W
represents any sources or sinks of energy within the volume. The term Eui is an energy flux
through S due to advection. Following the steps laid out earlier, we use the divergence theorem
and the assumptions of continuous fields and incompressibility to obtain

dE

dt
+ ∇ · (Fi + Eui) − W = 0 (3.20)

Our goal is to use the first law of thermodynamics to compute the temperature of the ice and
any changes in that temperature over time.

The energy E is the product of density and the specific internal energy of the ice e, which
is itself the product of the specific heat capacity cp and temperature T (because there is no
transfer between internal energy and pressure for an incompressible fluid). Thus,

dE
dt = d(ρe)

dt

= ρde
dt + edρ

dt

= ρcp
dT
dt

(3.21)

The heat flux due to diffusion follows Fourier’s “law” for heat conduction,

∇ · Fi = ∇ · (−k ∇T )
= −k ∇2T,

(3.22)

in which k is the thermal conductivity of ice and we assume gradients in its magnitude to be
negligible.

Using progress made above, we can write the advection term

∇ · (Eui) = ρcp ui · ∇T. (3.23)

In the expansion of the terms on the left-hand side of (3.23) (using the product rule), we have
implicitly ignored the term involving ∇ · ui because it is small with respect to the other terms
retained on the right-hand side.

Two energy sources must be considered: the work done on the system by internal deformation
and the latent heat associated with phase changes. The former is the product of the strain rate
and deviatoric stress, ϵ̇ijτij . The latter is the product of the latent heat of fusion and the
amount of material (ice) subject to melting (or freezing) per unit volume, per unit time, LfMf .

At last, we can write equation (3.20) in terms of temperature:

∂T

∂t
=

k

ρcp
∇2T − ui · ∇T +

1

ρcp
ϵ̇ijτij +

1

ρcp
LfMf . (3.24)

It is often the case that horizontal terms ∂2T
∂x2 and ∂2T

∂y2 are small enough to be ignored.

3.2.3 Conservation of mass

In this case, ϕ from our general conservation equation represents the mass M , or more conve-
niently M =

∫
V
ρdV , the integral of the density over the volume. Assuming that there are no

sources or sinks of mass in the volume (R=0), the mass conservation equation is written
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∫
V

∂ρ

∂t
dV +

∫
V

∇ · ρudV = 0 (3.25)

Ice is incompressible (the density does not change in time), which provides the equation for
local mass continuity,

∇ · u = 0. (3.26)

Equation (3.26) says that the velocity field is divergence-free. Applying the ∇ operator in
Cartesian coordinates gives

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0. (3.27)

To make use of this statement, we need to integrate from the base b to the upper surface s of
the ice mass,

s∫
b

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)
dz = 0. (3.28)

The integral of ∂uz

∂z is simply the difference between the vertical component of the velocity at
the upper and lower surfaces, so

uz (s)− uz (b) = −
s∫

b

∂ux

∂x
dz −

s∫
b

∂uy

∂y
dz. (3.29)

Changing the order of integration and differentiation using Leibniz’s rule, we obtain

uz (s)− uz (b) = − ∂
∂x

∫ s

b
uxdz + ux(s)

∂s
∂x − ux(b)

∂b
∂x

− ∂
∂y

∫ s

b
uydz + uy(s)

∂s
∂y − uy(b)

∂b
∂x .

(3.30)

The vertical velocity at the upper surface uz(s) is the result of motion parallel to the surface
slope, the rate of new ice accumulation Bs, and any time change in the surface height,

uz (s) =
∂s

∂t
+ ux(s)

∂s

∂x
+ uy(s)

∂s

∂y
− Bs, (3.31)

recognizing that a negative accumulation rate indicates ablation. Similarly, the vertical velocity
at the lower surface is

uz (b) =
∂b

∂t
+ ux(b)

∂b

∂x
+ uy(b)

∂b

∂y
− Mb (3.32)

in which Mb is the basal melt rate (Mb < 0 for freeze-on). Substituting (3.31) and (3.32) into
(3.30), we find that many terms cancel:

∂s

∂t
− Bs − ∂b

∂t
+ Mb = − ∂

∂x

s∫
b

uxdz − ∂

∂y

s∫
b

uydz. (3.33)

Finally, making the substitution that the ice thickness H = s− b, we obtain

∂H

∂t
= − ∂

∂x

s∫
b

uxdz − ∂

∂y

s∫
b

uydz + Bs − Mb. (3.34)

Integrating in the vertical gives

http://en.wikipedia.org/wiki/Leibniz_integral_rule
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∂H

∂t
= − ∇ · (UiH) + Bs − Mb, (3.35)

in which Ui is the vertically averaged velocity, i.e., Ui =
1
H

∫ s

b
uidz . Equation (3.35) is prog-

nostic; we can use the current velocity and geometry of the ice to compute the rate of change
in the geometry.
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Chapter 4

Shallow Ice Dynamics: Glide
Dynamical Core

This chapter describes the numerical implementation of mass, momentum, and energy con-
servation in the Glide dynamical core, which uses a Shallow Ice Approximation for ice flow.
For a model governed by shallow-ice dynamics, the solutions for the conservation of mass and
momentum are intimately linked.

4.1 Ice Thickness Evolution

The evolution of the ice thickness, H, stems from the continuity equation and can be expressed
as

∂H

∂t
= −∇ · (uH) +B, (4.1)

where u is the vertically averaged ice velocity, B is the surface mass balance and ∇ is the
horizontal gradient operator (Payne and Dongelmans, 1997).

For some regions of large-scale ice sheets, such as the slow-moving interior, or for simulations
run at coarse spatial resolution, a model governed by the shallow ice approximation (SIA) may
be appropriate. Further, for very long time integrations, such as those required in paleoclimate
studies, a model governed by the SIA may be the only computationally practical approach.

Based largely on the assumption that bedrock and ice surface slopes are sufficiently small
(Hutter, 1983), the SIA neglects all stress components other than those associated with vertical
shearing in the horizontal directions. These stresses, τxz and τyz, are approximated by

τxz(z) = −ρg(s− z)
∂s

∂x
,

τyz(z) = −ρg(s− z)
∂s

∂y
,

(4.2)

where ρ is the density of ice, g the acceleration due to gravity and s = H + b the ice surface.
Strain rates ϵ̇ij of polycrystalline ice are related to the stress tensor by the nonlinear flow

law:

ϵ̇iz =
1

2

(
∂ui

∂z
+

∂uz

∂i

)
= A(T ∗)τ

(n−1)
∗ τiz i = x, y, (4.3)

where τ∗ is the effective shear stress defined by the second invariant of the stress tensor, n the flow
law exponent and A the temperature–dependent flow law coefficient. T ∗ is the absolute temper-
ature corrected for the dependence of the melting point on pressure (T ∗ = T +8.7 · 10−4(s− z),
T in Kelvin, Huybrechts, 1986). The parameters n and A are determined experimentally; n

27
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is usually taken to be 3 and A depends primarily on temperature and secondarily on factors
such as crystal size and orientation and ice impurities. Experiments suggest that A follows the
Arrhenius relationship:

A(T ∗) = fae−Q/RT∗
, (4.4)

where a is a temperature–independent material constant, Q is the activation energy for creep
and R is the universal gas constant (Paterson, 1994). The tuning parameter f may be used
to speed up the ice flow, accounting for the effects of ice impurities and the development of
anisotropic ice fabrics (Payne, 1999; Tarasov and Peltier, 1999, 2000; Peltier et al., 2000).

Integrating (4.4) with respect to z gives the vertical profile of the horizontal velocity in each
column:

u(z)− u(b) = −2(ρg)n|∇s|n−1∇s

z∫
b

A(s− z)ndz, (4.5)

where u(b) is the basal sliding velocity. Integrating (4.5) again with respect to z gives an
expression for the vertically averaged ice velocity:

uH = −2(ρg)n|∇s|n−1∇s

s∫
b

z∫
b

A(s− z)ndzdz′. (4.6)

The vertical ice velocity can be derived from the conservation of mass for an incompressible
material:

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0. (4.7)

Integrating (4.7) with respect to z gives the vertical profile of the vertical velocity in each
column:

w(z) = −
z∫

h

∇ · u(z)dz + w(b), (4.8)

with lower kinematic boundary condition

w(b) =
∂b

∂t
+ u(b) ·∇b−Mb, (4.9)

where Mb is the basal melt rate given by (4.55). The upper kinematic boundary is given by the
surface mass balance and must satisfy

w(s) =
∂s

∂t
+ u(s) ·∇s−Bs. (4.10)

4.1.1 Numerical grid

The continuous equations describing ice physics have to be discretized in order to be solved by
a computer (which is inherently finite). This section describes the finite–difference grids used
by the model.

Horizontal grid

The modelled region (x ∈ [0, Lx], y ∈ [0, Ly]) is discretized using a regular grid so that xi =
(i− 1)∆x for i ∈ [1, N ] (and similarly for yj). The model uses two staggered horizontal grids in
order to improve stability. Both grids use the same grid spacing, ∆x and ∆y, but are offset by
half a grid cell (see Fig. 4.1). Quantities calculated on the staggered (r, s)–grid are denoted with
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(1, 1)

(N − 1,M − 1)

(r, s)

(i, j)

(N,M)

Figure 4.1: Horizontal Grid.

a tilde, i.e., F̃ . Quantities are transformed between grids by averaging over the surrounding
nodes; i.e., a quantity in the (i, j)–grid becomes in the (r, s)–grid:

F̃r,s = F̃i+ 1
2 ,j+

1
2
=

1

4
(Fi,j + Fi+1,j + Fi+1,j+1 + Fi,j+1), (4.11a)

and similarly for the reverse transformation:

Fi,j = Fr− 1
2 ,s−

1
2
=

1

4
(F̃r−1,s−1 + F̃r,s−1 + F̃r,s + F̃r−1,s). (4.11b)

In general, horizontal velocities and associated quantities like the diffusivity are calculated
on the (r, s)–grid. Ice thickness, temperatures and vertical velocities are calculated on the
(i, j)–grid.

Horizontal gradients are calculated on the (r, s)–grid; i.e., surface gradients are(
∂s

∂x

)
r,s

= s̃xr,s =
si+1,j − si,j + si+1,j+1 − si,j+1

2∆x
, (4.12a)(

∂s

∂y

)
r,s

= s̃yr,s =
si,j+1 − si,j + si+1,j+1 − si+1,j

2∆y
. (4.12b)

Ice thickness gradients, H̃x
r,s and H̃y

r,s, are formed analogously. Gradients in the (r, s)–grid are
formed in a similar way:(

∂u

∂x

)
i,j

= ux
i,j =

ũr,s−1 − ũr−1,s−1 + ũr,s − ũr−1,s

2∆x
. (4.13)

Periodic boundary conditions

The model can be run with horizontal periodic boundary conditions, i.e. with the western edge
of the modelled region joined to the eastern edge. Figure 4.2 illustrates the numeric grid when
the model is run in torus mode.

These boundary conditions are enforced by exchanging points for the temperature and ver-
tical velocity calculations. The ice thicknesses are calculated explicitly at the ghostpoints.
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Figure 4.2: A row of the numeric grid when the model is used in torus mode. Circles indicate
points in (i, j)–grid and squares indicate points in the (r, s)–grid. Points with the same color
are logically the same.

σ–coordinate system

The vertical coordinate, z, is scaled by the ice thickness analogous to the s–coordinate in
numerical weather simulations (e.g., Holton, 1992). A new vertical coordinate, σ, is introduced
so that the ice surface is at σ = 0 and the ice base at σ = 1 (see Fig. 4.3), i.e.

σ =
s− z

H
. (4.14)

ỹ

x

z

y

x̃

σ

Figure 4.3: Vertical scaling of the ice sheet model. The vertical axis is scaled to unity. The
horizontal coordinates are not changed.

The derivatives of a function f in (x, y, z, t) become in the new (x̃, ỹ, σ, t̃) system:

∂f

∂x
=

∂f

∂x̃
+

1

H
∆x̃

∂f

∂σ
, (4.15a)

∂f

∂y
=

∂f

∂ỹ
+

1

H
∆ỹ

∂f

∂σ
, (4.15b)

∂f

∂t
=

∂f

∂t̃
+

1

H
∆t̃

∂f

∂σ
, (4.15c)

∂f

∂z
= − 1

H

∂f

∂σ
, (4.15d)

where the geometric factors, ∆x̃, ∆ỹ and ∆t̃, are defined by

∆x̃ =

(
∂s

∂x̃
− σ

∂H

∂x̃

)
, (4.16a)

∆ỹ =

(
∂s

∂ỹ
− σ

∂H

∂ỹ

)
, (4.16b)

∆t̃ =

(
∂s

∂t̃
− σ

∂H

∂t̃

)
. (4.16c)
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The integral of z becomes in the σ–coordinate system:

z∫
b

fdz = −H

σ∫
1

fdσ. (4.17)

The vertical coordinate can be discretized using an irregular grid spacing to reflect the fact
that ice flow is more variable at the bottom of the ice column. In the vertical the index k is
used.

4.1.2 Ice sheet equations in σ–coordinates

The horizontal velocity, (4.5), becomes in the σ–coordinate system

u(σ) = −2(ρg)nHn+1|∇s|n−1∇s

σ∫
1

Aσndσ + u(1). (4.18)

The vertically averaged velocity is

uH = H

1∫
0

udσ + u(1)H. (4.19)

The vertical velocity (4.8) becomes

w(σ) = −
σ∫

1

(
∂u

∂σ
· (∇s− σ∇H) +H∇ · u

)
dσ + w(1), (4.20)

with lower boundary condition

w(1) =
∂b

∂t
+ u(1) ·∇b−Mb. (4.21)

4.1.3 Calculating the horizontal velocity and diffusivity

Horizontal velocity and diffusivity calculations are split up into two parts:

u(σ) = c∇s+ u(1), (4.22a)

D = H

1∫
0

cdσ, (4.22b)

q = D∇s+Hu(1), (4.22c)

with

c(σ) = −2(ρg)nHn+1|∇s|n−1

σ∫
1

Aσndσ. (4.22d)

Quantities u and D are found on the velocity grid. Integrating from the ice base (k = N−1),
the discretized quantities become

c̃r,s,N = 0, (4.23a)
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c̃r,s,k = −2(ρg)nHn+1
r,s

(
(s̃xr,s)

2 + (s̃yr,s)
2
)n−1

2

k∑
κ=N−1

Ar,s,κ +Ar,s,κ+1

2

(
σκ+1 + σκ

2

)n

(σκ+1 − σκ), (4.23b)

D̃r,s = Hr,s

N−1∑
k=0

c̃r,s,k + c̃r,s,k+1

2
(σk+1 − σk). (4.23c)

Expressions for ui,j,k and qi,j are straightforward.

4.1.4 Solving the ice thickness evolution equation

Equation (4.1) can be rewritten as a diffusion equation, with nonlinear diffusion coefficient D:

∂H

∂t
= −∇ ·D∇s+B = −∇ · q +B, (4.24)

where B = Bs − Mb is the total mass balance. This nonlinear partial differential equation
can be linearized by using the diffusion coefficient from the previous time step. The diffusion
coefficient is calculated on the (r, s)–grid, i.e. staggered in both x and y directions. Figure 4.4
illustrates the staggered grid. Using finite differences, the fluxes in the x direction, qx, become

qxi+ 1
2 ,j

= −1

2
(D̃r,s + D̃r,s−1)

si+1,j − si,j
∆x

, (4.25a)

qxi− 1
2 ,j

= −1

2
(D̃r−1,s + D̃r−1,s−1)

si,j − si−1,j

∆x
, (4.25b)

and the fluxes in the y direction are

qy
i,j+ 1

2

= −1

2
(D̃r,s + D̃r−1,s)

si,j+1 − si,j
∆y

, (4.25c)

qy
i,j− 1

2

= −1

2
(D̃r,s−1 + D̃r−1,s−1)

si,j − si,j−1

∆y
. (4.25d)

ADI Scheme

The alternating–direction implicit (ADI) method uses the concept of operator splitting where
(4.24) is solved first in the x–direction and then in the y–direction (Press et al., 1992). The
time step ∆t is divided into two partial steps ∆t/2. The discretized version of Equation (4.24)
becomes (Huybrechts, 1986):

2
H

t+ 1
2

i,j −Ht
i,j

∆t
= −

q
x,t+ 1

2

i+ 1
2 ,j

− q
x,t+ 1

2

i− 1
2 ,j

∆x
−

qy,t
i,j+ 1

2

− qy,t
i,j− 1

2

∆y
+Bi,j , (4.26a)

2
Ht+1

i,j −H
t+ 1

2
i,j

∆t
= −

q
x,t+ 1

2

i+ 1
2 ,j

− q
x,t+ 1

2

i− 1
2 ,j

∆x
−

qy,t+1

i,j+ 1
2

− qy,t+1

i,j− 1
2

∆y
+Bi,j . (4.26b)

Gathering all t+ 1
2 terms on the left side,(4.26a) can be expressed as a tridiagonal set of equations

for each row j:

− αi,jH
t+ 1

2
i−1,j + (1− βi,j)H

t+ 1
2

i,j − γi,jH
t+ 1

2
i+1,j = δi,j , (4.27)
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Figure 4.4: Illustration of the staggered grid used to calculate ice thicknesses, diffusivities and
mass fluxes.

with

αi,j =
D̃r−1,s + D̃r−1,s−1

4∆x2
∆t, (4.28a)

βi,j = −D̃r,s + 2D̃r−1,s + D̃r−1,s−1

4∆x2
∆t = −(αi,j + γi,j), (4.28b)

γi,j =
D̃r,s + D̃r,s−1

4∆x2
∆t. (4.28c)

The RHS is given by

δi,j = Ht
i,j −

∆t

2∆y

(
qy,t
i,j+ 1

2

− qy,t
i,j− 1

2

)
+

∆t

2
Bi,j + αi,jhi−1,j − βi,jhi,j + γi,jhi+1,j . (4.28d)

A similar tridiagonal system is found for each column i of (4.26b).

Linearised semi–implicit scheme

Using the Crank–Nicolson scheme, the semi–implicit temporal discretisation of (4.24) is

Ht+1
i,j −Ht

i,j

∆t
=

qx,t+1

i+ 1
2 ,j

− qx,t+1

i− 1
2 ,j

2∆x
+

qy,t+1

i,j+ 1
2

− qy,t+1

i,j− 1
2

2∆y

+
qx,t
i+ 1

2 ,j
− qx,t

i− 1
2 ,j

2∆x
+

qy,t
i,j+ 1

2

− qy,t
i,j− 1

2

2∆y
+Bi,j . (4.29)

The superscripts t and t+1 indicate at what time the ice thickness H is evaluated. Collecting
all Ht+1 terms of (4.29) on the LHS and moving all other terms to the RHS, we can rewrite
(4.29) as

− αi,jH
t+1
i−1,j − βi,jH

t+1
i+1,j − γi,jH

t+1
i,j−1 − δi,jH

t+1
i,j+1 + (1− ϵi,j)H

t+1
i,j = ζi,j , (4.30)
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with the RHS

ζi,j = αi,jH
t
i−1,j + βi,jH

t
i+1,j + γi,jH

t
i,j−1 + δi,jH

t
i,j+1 + (1 + ϵi,j)H

t
i,j

+ 2(αi,jhi−1,j + βi,jhi+1,j + γi,jhi,j−1 + δi,jhi,j+1 + ϵi,jhi,j) +Bi,j∆t. (4.31)

Here the elements of the sparse matrix are

αi,j =
D̃r−1,s + D̃r−1,s−1

4∆x2
∆t, (4.32a)

βi,j =
D̃r,s + D̃r,s−1

4∆x2
∆t, (4.32b)

γi,j =
D̃r,s−1 + D̃r−1,s−1

4∆y2
∆t, (4.32c)

δi,j =
D̃r,s + D̃r−1,s

4∆y2
∆t, (4.32d)

ϵi,j = −(αi,j + βi,j + γi,j + δi,j). (4.32e)

This matrix equation is solved using an iterative solver for non-symmetric sparse matrices.
The solver used here is the bi–conjugate gradient method with incomplete LU decomposition
preconditioning provided by the SLAP package.

Nonlinear scheme

The nonlinearity of (4.24) arises from the dependance of D on s. A nonlinear scheme for (4.24)
can be formulated using Picard iteration, which consists of two iterations: an outer, nonlinear
and an inner, linear equation. The scheme starts with the diffusivity from the previous time
step:

D(0),t+1 = Dt. (4.33a)

Equation (4.30) becomes

− α
(ξ),t+1
i,j Ht+1

i−1,j − β
(ξ),t+1
i,j H

(ξ+1),t+1
i+1,j − γ

(ξ),t+1
i,j H

(ξ+1),t+1
i,j−1

− δ
(ξ),t+1
i,j H

(ξ+1),t+1
i,j+1 + (1− ϵ

(ξ),t+1
i,j )H

(ξ+1),t+1
i,j = ζ

(0),t
i,j . (4.33b)

Equation (4.33b) is iterated over ξ until the maximum ice thickness residual is smaller than
some threshold:

max
(∣∣∣H(ξ+1),t+1 −H(ξ),t+1

∣∣∣) < Hres. (4.34)

4.1.5 Calculating vertical velocities

Grid velocity

The vertical grid moves as a result of using a σ–coordinate system. The grid velocity is

wgrid(σ) =
∂s

∂t
+ u ·∇s− σ

(
∂H

∂t
+ u ·∇H

)
. (4.35)

The numerical implementation of (4.35) is straightforward.
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Figure 4.5: Flow diagram showing how the linearised solver (on the left) and the non–linear
solver work. The inner, linear iteration is contained within the box labeled “calculate new ice
distribution”.

Vertical velocity

The discretized version of the vertical velocity equation (4.20) is slightly more compilicated
because the horizontal velocities are calculated on the (r, s) grid. The vertical velocity at the

ice base is wi,j,N = wgrid
i,j,N − Mbi, j, where Mbi, j is the basal melt rate. Integrating from the

bottom, the vertical velocity is then

wi,j,k = −
1∑

k̃=N−1

{
Hi,j

(
ux
i,j,k + ux

i,j,k+1

2
+

vyi,j,k + vyi,j,k+1

2

)
(σk+1 − σk)

+(ũi,j,k+1 − ũi,j,k)

(
s̃xi,j −

1

2
(σk+1 + σk)H̃

x
i,j

)
+(ṽi,j,k+1 − ṽi,j,k)

(
s̃yi,j −

1

2
(σk+1 + σk)H̃

y
i,j

)}
+ wi,j,N ,

(4.36)

with the weighted ice thickness

Hi,j =
4Hi,j + 2(Hi−1,j +Hi+1,j +Hi,j−1 +Hi,j+1)

16

+
Hi−1,j−1 +Hi+1,j−1 +Hi+1,j+1 +Hi−1,j+1

16
.

This scheme produces vertical velocities at the ice divide which are too small. The verti-
cal velocities on the ice surface are given by the upper kinematic boundary condition (4.10).
Equation (4.36) can be corrected with

w∗
i,j,k = wi,j,k − (1− σk)(wi,j,k − wsi,j), (4.37)

where wsi,j is the vertical velocity at the ice surface given by (4.10). Figure 4.6 shows the
different vertical velocities at the ice surface. The difference between the vertical velocities
calculated by the model and the vertical velocities given by (4.10) at the ice margin are due
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Figure 4.6: Vertical ice surface velocities of the EISMINT-1 moving margin experiment.

to the fact that temperatures and velocities are only calculated when the ice is thicker than a
certain threshold value which is not met at the ice margin.

Figure 4.7 shows vertical profiles of the vertical velocity at the ice divide and a point halfway
between the divide and the domain margin. A corresponding temperature profile is also shown
since the vertical velocity determines the vertical temperature advection (see Section 4.2.4).

4.2 Temperature Solver

The flow law coefficient A in (4.3) depends on the ice temperature. Thus it is necessary to deter-
mine how the distribution of ice temperatures changes with a changing ice sheet configuration.
The thermal evolution of the ice sheet is described by

∂T

∂t
=

k

ρc
∇2T − u ·∇T +

Φ

ρc
− w

∂T

∂z
, (4.38)

where T is the absolute temperature, k is the thermal conductivity of ice, c is the specific heat
capacity, and Φ is the heat generated by internal friction. In the σ–coordinate system, (4.38)
becomes

∂T

∂t
=

k

ρcH2

∂2T

∂σ2
− u ·∇T +

σg

c

∂u

∂σ
·∇s+

1

H

∂T

∂σ
(w − wgrid) . (4.39)

The terms on the RHS represent (1) vertical diffusion, (2) horizontal advection, (3) internal heat
generation due to friction, and (4) vertical advection and a correction due to the σ–coordinate
system. We rewrite (4.39) as

∂T

∂t
= a

∂2T

∂σ2
+ b(σ) + Φ(σ) + c(σ)

∂T

∂σ
, (4.40)
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Figure 4.7: Vertical velocity and temperature distribution for columns at the ice divide and a
point halfway between the divide and the domain margin.

where

a =
k

ρcH2
(4.41a)

b(σ) = −u ·∇T (4.41b)

Φ(σ) =
σg

c

∂u

∂σ
·∇s (4.41c)

c(σ) =
1

H
(w − wgrid) (4.41d)

(Note the different meanings for b and c here relative to usage elsewhere in this document.)

4.2.1 Vertical diffusion

Discretization of ∂2T/∂σ2 is slightly complicated because the vertical grid is irregular. Using
Taylor series the central difference formulas are

∂T

∂σ

∣∣∣∣
σk−1/2

=
Tk − Tk−1

σk − σk−1
(4.42a)

and

∂T

∂σ

∣∣∣∣
σk+1/2

=
Tk+1 − Tk

σk+1 − σk
. (4.42b)

The second partial derivative is then, also using central differences:

∂2T

∂σ2

∣∣∣∣
σk

=
∂T/∂σ|σk+1/2

− ∂T/∂σ|σk−1/2

1/2 (σk+1 − σk−1)
. (4.42c)
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Inserting (4.42a) and (4.42b) into (4.42c), we obtain

∂2T

∂σ2

∣∣∣∣
σk

=
2(Tk+1 − Tk)

(σk+1 − σk)(σk+1 − σk−1)
− 2(Tk − Tk−1)

(σk − σk−1)(σk+1 − σk−1)
. (4.42d)

Finally, the terms of equation (4.42d) are rearranged:

∂2T

∂σ2

∣∣∣∣
σk

=
2Tk−1

(σk − σk−1)(σk+1 − σk−1)
− 2Tk

(σk+1 − σk)(σk − σk−1)

+
2Tk+1

(σk+1 − σk)(σk+1 − σk−1)
. (4.43)

4.2.2 Horizontal advection

The horizontal advection term, −u ·∇T , is found using an upwinding scheme. We start with
the 1D case. (The method can readily be extended to 2D.) As always, the temperature function
is expressed as a Taylor series:

T (x+∆x) = T (x) + ∆xT ′(x) +
∆x2

2
T ′′(x) + . . . (4.44a)

If we replace ∆x with 2∆x, (4.44a) becomes

T (x+ 2∆x) = T (x) + 2∆xT ′(x) + 2∆x2T ′′(x) + . . . (4.44b)

From (4.44a) and (4.44b) we can construct a difference formula where the O(∆x2) error is
cancelled, by multiplying (4.44a) with 4 and substracting the result from (4.44b):

T ′
+(x) =

4T (x+∆x)− T (x+ 2∆x)− 3T (x)

2∆x
, (4.45a)

and similarly for the backward difference:

T ′
−(x) = −4T (x−∆x)− T (x− 2∆x)− 3T (x)

2∆x
. (4.45b)

So the horizontal advection term in 1D becomes

bx = −ux
∂T

∂x
=

−ux

2∆x

{
−(4Ti−1 − Ti−2 − 3Ti) when ux > 0

4Ti+1 − Ti+2 − 3Ti when ux < 0
(4.46)

A similar expression is found for by by substituting y for x. The combined horizontal advection
term is

b = −u ·∇T = −
(
ux

∂T

∂x
+ uy

∂T

∂y

)
= bx + by = b1 + b2Ti. (4.47)

4.2.3 Heat generation

Taking the derivative of (4.18) with respect to σ, we get

∂ux

∂σ
= −2(ρg)nHn+1|∇s|n−1 ∂s

∂x
A(T ∗)σn. (4.48)
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Thus,

Φ(σ) =
σg

c

∂u

∂σ
·∇s =

σg

c

(
∂ux

∂σ

∂s

∂x
+

∂uy

∂σ

∂s

∂y

)
= −2(ρg)nHn+1|∇s|n−1σg

c
A(T ∗)σn

((
∂s

∂x

)2

+

(
∂s

∂y

)2
)

= − 2

cρ
(gσρ)n+1 (H|∇s|)n+1

A(T ∗).

(4.49)

The constant factor 2
cρ (gσρ)

n+1 is calculated during initialization in the subroutine glide init temp.
This factor is assigned to array c1(1:upn). c1 also includes various scaling factors and the factor
1/16 to normalise A.

The factor (H|∇s|)n+1
is calculated in subroutine glide finddisp:

c2i,j =

(
H̃i,j

√
S̃x

2

i,j + S̃y
2

i,j

)n+1

. (4.50)

The final factor is found by averaging over the neighboring nodes:

Ai,j = 4Ai,j+2(Ai−1,j+Ai+1,j+Ai,j−1+Ai,j+1)+(Ai−1,j−1+Ai+1,j−1+Ai+1,j+1+Ai−1,j+1).
(4.51)

4.2.4 Vertical advection

The vertical advection term ∂T/∂σ is computed from the central difference formula for unevenly
spaced nodes:

∂T

∂σ
=

Tk+1 − Tk−1

σk+1 − σk−1
. (4.52)

4.2.5 Boundary conditions

At the upper boundary, ice temperatures are set to the surface temperature, Tsurf. The ice at
the base is heated by the geothermal heat flux and sliding friction:

∂T

∂σ

∣∣∣∣
σ=1

= −GH

k
− Hτ b · u(1)

k
, (4.53)

where τ b = −ρgH∇s is the basal shear stress and u(1) is the basal ice velocity. Ice temperatures
are held constant if they reach the pressure melting point of ice, i.e.

T ∗ = Tpmp if T ≥ Tpmp. (4.54)

Excess heat is then used to formulate a melt rate, Mb:

Mb =
k

ρL

(
∂T ∗

∂z
− ∂T

∂z

)
, (4.55)

where L is the latent heat of fusion. Finally, basal temperatures are held constant if the ice is
floating:

∂T (1)

∂t
= 0. (4.56)
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4.2.6 Putting it all together

Equation (4.39) is solved for each ice column. The horizontal dependency of the horizontal
advection term, (4.41b), is resolved by iterating the vertical solution. Combining the individual
terms using a fully explicit finite-difference scheme, (4.40) becomes

Tk,t+1 − Tk,t

∆t
=

(
2aTk−1,t

(σk − σk−1)(σk+1 − σk−1)
− 2aTk,t

(σk+1 − σk)(σk − σk−1,t)

+
2aTk+1,t

(σk+1 − σk)(σk+1 − σk−1)

)
+ b1k,t + b2kTk,t +Φk + ck

Tk+1,t − Tk−1,t

σk+1 − σk−1
. (4.57a)

Similarly, the fully implicit scheme is

Tk,t+1 − Tk,t

∆t
=

(
2aTk−1,t+1

(σk − σk−1)(σk+1 − σk−1)
− 2aTk,t+1

(σk+1 − σk)(σk − σk−1,t+1)

+
2aTk+1,t+1

(σk+1 − σk)(σk+1 − σk−1)

)
+ b1k,t+1 + b2kTk,t+1 +Φk + ck

Tk+1,t+1 − Tk−1,t+1

σk+1 − σk−1
. (4.57b)

Taking the average of (4.57a) and (4.57b) gives the Crank–Nicolson scheme. The resulting
equation is then rearranged, with terms of Tk−1,t+1, Tk,t+1 and Tk+1,t+1 combined to give the
tridiagonal system

αkTk−1,t+1 + βkTk,t+1 + γkTk+1,t+1 = δk, (4.58)

where for k = 2 to N − 1 we have

αk = −1

2

2a∆t

(σk − σk−1)(σk+1 − σk−1)
+

1

2

ck∆t

σk+1 − σk−1
, (4.59a)

βk = 1 +
1

2

2a∆t

(σk+1 − σk)(σk − σk−1)
− 1

2
b2k∆t = 1− αk − γk − 1

2
b2k∆t, (4.59b)

γk = −1

2

2a∆t

(σk+1 − σk)(σk+1 − σk−1)
− 1

2

ck∆t

σk+1 − σk−1
, (4.59c)

δk = −αkTk−1,t + (2− βk)Tk,t − γkTk+1,t +
1

2
(b1k,t + b1k,t+1)∆t+Φk∆t. (4.59d)

Boundary conditions

At the upper boundary we have

α1 = 0, β1 = 1, γ1 = 0, δ1 = Tsurf. (4.59e)

The lower boundary condition is more complicated. Here we consider only the case when the
temperature is below the pressure melting point of ice. The BCs for floating ice and temperatures
at the pressure melting point of ice are trivial. The geothermal heat flux is applied at the lower
boundary; i.e., (4.42b) becomes

∂T

∂σ

∣∣∣∣
σk+1/2

= −GH

k
. (4.60)

Assuming that σk − σk−1 = σk+1 − σk = ∆σ and inserting (4.42a) and (4.60) into (4.42c), the
second partial derivative becomes

∂2T

∂σ2

∣∣∣∣
σN

=

(
−GH

k
− TN − TN−1

∆σ

)
/∆σ = − GH

k∆σ
− TN − TN−1

∆σ2
. (4.61)

Inserting the new conduction term and replacing the derivative of the vertical advection term
with the Neumann boundary condition, (4.57a) becomes

TN,t+1 − TN,t

∆t
= −a

(
GH

k∆σ
+

TN,t − TN−1,t

∆σ2

)
+ b1N,t + b2NTN,t +ΦN − cN

GH

k
, (4.62a)
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and similarly for (4.57b):

TN,t+1 − TN,t

∆t
= −a

(
GH

k∆σ
+

TN,t+1 − TN−1,t+1

∆σ2

)
+ b1N,t+1 + b2NTN,t+1

+ΦN − cN
GH

k
. (4.62b)

The elements of the tridiagonal system at the lower boundary are then

αN = − a∆t

2(σN − σN−1)2
, (4.63a)

βN = 1− αN +
1

2
b2N∆t, (4.63b)

γN = 0, (4.63c)

δN =− αNTN−1,t + (2− βN )TN,t − a
GH∆t

k(σN − σN−1)

+
1

2
(b1N,t + b1N,t+1)∆t+ΦN∆t− cN

GH∆t

k
.

(4.63d)

4.3 Basal Boundary Condition

This section describes the formulation of the basal boundary condition. An interface for the
upper boundary condition (atmospheric BC) is easily defined by the surface temperature and
mass balance. Similarly, the basal boundary consists of mechanical and thermal boundary
conditions. The complications arise because the thermal and mechanical boundary conditions
depend on each other. The interface of the basal boundary can be described with the following
fields (see also Fig. 4.8):

1. basal traction: This field specifies a parameter which is used to allow basal sliding.

2. basal heat flux: This is the heat flux entering the ice sheet from below.

3. basal water depth: The presence of basal melt water affects the basal ice temperature.

Also, the ice sheet model calculates a melt/freeze rate based on the temperature gradient and
basal water depth. This is handled by Glide.

4.3.1 Mechanical boundary conditions

If the ice is not frozen to the bed, basal décollement may occur. This can be parameterized
by a traction factor, tb. Within the ice sheet model, tb can be used to calculate basal sliding
velocities ub in the case of zero–order physics. That is,

ub = tbτ b, (4.64)

where τb is the basal shear stress. Alternatively, tb can be used as part of the stress–balance
calculations when the model is used with higher order physics. In simple models tb may be
uniform or prescribed as a spatial variable. More complex models may wish to make tb dependent
on other variables, such as basal melt rate. Typically tb will depend on the presence of basal
water.

The second mechanical boundary condition, basal melting/freeze–on Mb, is handled within
the ice sheet model. The details are described in Section 4.3.2.
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Figure 4.8: Basal boundary condition.

4.3.2 Thermal boundary conditions

The thermal boundary condition at the ice base is more complicated than the mechanical BC.
The ice is heated from below by the geothermal heat flux. Heat is generated by friction with the
bed. Furthermore, the ice temperature is constrained to be less than or equal to the pressure
melting point of ice. The thermal boundary condition is a flux condition if there is no water
present. If there is water, the basal temperature is set to the pressure melting temperature. (If
it were lower, there would be no water, and if it were higher, there would be no ice.)

Basal melting and freezing

At the ice base, z = b, we can define outgoing and incoming heat fluxes, Ho and Hi:

Ho = −kice
∂T

∂z

∣∣∣∣
z=b+

(4.65a)

and

Hi = −krock
∂T

∂z

∣∣∣∣
z=b−

+ ub · τ b +

{
ρiceMb/L when Mb < 0

0 otherwise
(4.65b)

where kice and krock are the thermal conductivities of ice and rock, ub · τ b is the heat generated
by friction with the bed, and L is the latent heat of fusion. The basal melt/freeze–on rate Mb

can then be calculated from the difference between the incoming and outgoing heat fluxes:

Mb =
Hi −Ho

ρiceL
(4.66)

There is freeze–on if Mb < 0, and basal melting if Bb > 0.

Geothermal heat flux

The heat flux accross the basal boundary depends on past temperature variations since temper-
ature perturbations penetrate the bedrock if the ice is frozen to the ground (Ritz, 1987). The
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heat equation for the bedrock layer is given by the diffusion equation

∂T

∂t
=

krock
ρrockcrock

∇2T =
krock

ρrockcrock

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
, (4.67)

where krock is the thermal conductivity, ρrock the density, and crock the specific heat capacity of
the bedrock layer.

Initial conditions for the temperature field T are found by applying the geothermal heat flux
G to an arbitrary surface temperature T0:

T (x, y, z) = T0 +
G

krock
z. (4.68)

This ensures that initially the geothermal heat flux experienced by the ice sheet is equal to the
regional heat flux. The basal boundary condition of the bedrock layer is kept constant, i.e.

T (x, y,Hrock) = T0 +
G

krock
Hrock. (4.69)

Lateral boundary conditions are given by

∂T

∂x

∣∣∣∣
x=0

=
∂T

∂x

∣∣∣∣
x=Lx

=
∂T

∂y

∣∣∣∣
y=0

=
∂T

∂y

∣∣∣∣
y=Ly

= 0. (4.70)

At the upper boundary, the heat flux of the rock layer has to be matched with the heat flux in
the basal ice layer when the ice is frozen to the bed, i.e.

krock
∂T

∂z

∣∣∣∣
z=−0

= kice
∂T

∂z

∣∣∣∣
z=+0

. (4.71)

Otherwise the temperature of the top bedrock layer is set to the surface temperature (if the
cell has been occupied by ice, but there is no ice present) or the basal ice temperature (if there
is ice). Equation (4.71) is automatically fulfilled if we set the top bedrock temperature to the
basal ice temperature everywhere and then calculate the geothermal heat flux to be used as
boundary condition for (4.38).

4.3.3 Numerical solution

The horizontal grid of the bedrock layer is described in Section 4.1.1. The vertical bedrock
grid is irregular like the vertical grid of the ice sheet. However, it is not scaled. Also for now,
we ignore topography or isostatic adjustment, i.e. the bedrock layer is assumed to be flat and
constant.

The horizontal second derivative in (4.67) becomes using finite–differences

∂2T

∂x2

∣∣∣∣
xi,yi,zi

= Txx,i,j,k =
Ti+1,j,k − 2Ti,j,k + Ti−1,j,k

∆x
, (4.72)

and similarly for ∂2T/∂y2. The vertical second derivative ∂2T/∂z2 is similar to (4.43):

∂2T

∂z2

∣∣∣∣
xi,yi,zi

= Tzz,i,j,k =
2Ti,j,k−1

(zk − zk−1)(zk+1 − zk−1)
− 2Ti,j,k

(zk+1 − zk)(zk − zk−1)

+
2Ti,j,k+1

(zk+1 − zk)(zk+1 − zk−1)
. (4.73)

Using the Crank-Nicholson scheme, (4.67) becomes

T t+1
i,j,k − T t

i,j,k

∆t
= D

{
T t+1
xx,i,j,k + T t

xx,i,j,k

2
+

T t+1
yy,i,j,k + T t

yy,i,j,k

2
+

T t+1
zz,i,j,k + T t

zz,i,j,k

2

}
, (4.74)
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with D = krock/(ρrockcrock). Equation (4.74) is solved by gathering all T t+1 terms on the LHS
and all other terms on the RHS. The index (i, j, k) is linearized using ι = i+(j−1)N+(k−1)NM .
The resulting matrix system is solved using the same bi–conjugate gradient solver as for the ice
thickness evolution.

4.3.4 Basal hydrology

It is clear from the discussion above that the presence of basal water plays a crucial role in
specifying both the mechanical and thermal boundary conditions. However, the treatment of
basal water can vary greatly. Basal water is, therefore, left as an unspecified interface. Glide
does provide a simple local water balance model which can be run in the absence of more
complex models.

4.3.5 Putting it all together

The basal boundary consists of the individual components described in the previous sections.
All components are tightly linked with each other. Figure 4.9 illustrates how the modules are
linked and in what order they are resolved. The order of executions is then:

1. Find the basal heat flux by either solving the equation describing the thermal evolution of
the lithosphere, (4.67), or by using the geothermal heat flux directly. The upper boundary
condition of (4.67) is the same as the lower boundary condition of the thermal evolution
of the ice sheet.

2. Either (1) the lower boundary condition for the thermal evolution of the ice sheet is given
by the basal heat flux from Step 1 ; or (2) if melt water is present, the basal temperature
is set to the pressure melting point of ice.

3. Calculate the temperature distribution within the ice sheet given the boundary condition
found during Step 2 and the atmospheric BC.

4. Calculate a melt/freeze–on rate using Equation (4.66) given the outgoing heat flux calcu-
lated during Step 3, friction with the bed (calculated during the previous Step 7 ) and the
incoming heat flux from Step 1. Freezing occurs only when there is basal water.

5. Track basal water. This is a user supplied module which can take any complexity. Inputs
will typically be the melt/freeze–on rate determined during Step 4.

6. Calculate the basal traction parameter. Again, this is a user supplied module which
typically will involve the presence of basal water (calculated during Step 5 ).

7. Solve the mechanical ice equations given basal traction parameter from Step 6.

Clearly, this scheme has the problem that heat is lost if the basal heat flux is such that more
water could be frozen than is available. This might be avoided by iterating the process. On the
other hand, the heat loss may be negligible if time steps are fairly small.

4.4 Isostatic Adjustment

The ice sheet model includes simple approximations for calculating isostatic adjustment. These
approximations depend on how the lithosphere and the mantle are treated. For each subsystem
there are two models. The lithosphere can be described as a

local lithosphere: the flexural rigidity of the lithosphere is ignored, i.e. this is equivalent to
ice floating directly on the asthenosphere; or
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Figure 4.9: Flow diagram illustrating how the various modules communicate with each other
by exchanging data fields.
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elastic lithosphere: the flexural rigidity is taken into account;

while the mantle is treated as a

fluid mantle: the mantle behaves like a non-viscous fluid, with isostatic equilibrium reached
instantaneously; or

relaxing mantle: the flow within the mantle is approximated by an exponentially decaying
hydrostatic response function, i.e. the mantle is treated as a viscous half space.

4.4.1 Calculation of ice-water load

At each isostasy time step, the load of ice and water is calculated as an equivalent mantle-depth
(L). If the basal elevation is above sea level, the load is simply due to the ice:

L =
ρi
ρm

H, (4.75)

whereH is the ice thickness, with ρi and ρm being the densities of the ice and mantle respectively.
In the case where the bedrock is below sea level, the load is calculated is that due to a change
in sea level and/or the presence of non-floating ice. When the ice is floating (ρiH < ρo(z0−h)),
the load is due only to sea-level changes:

L =
ρo
ρm

z0, (4.76)

whereas when the ice is grounded, it displaces the water and adds an additional load:

L =
ρiH + ρobr

ρm
. (4.77)

Here, ρo is the density of sea water, z0 is the change in sea-level relative to a reference level, and
br is the bedrock elevation relative to the same reference level. The value of br will be negative
for submerged bedrock, hence the plus sign in (4.77).

4.4.2 Elastic lithosphere model

The elastic model is selected by setting lithosphere = 1 in the configuration file. By simulat-
ing the deformation of the lithosphere, the deformation seen by the asthenosphere beneath is
calculated. In the absence of this model, the deformation is that due to Archimedes’ Principle,
as though the load were floating on the asthenosphere.

The elastic lithosphere model is based on work by Lambeck and Nakiboglu (1980), and
its implementation is fully described in Hagdorn (2003). The lithosphere model affects only
the geometry of the deformation; the timescale for isostatic adjustment is controlled by the
asthenosphere model.

The load due to a single (rectangular) grid point is approximated as being applied to a disc
of the same area. The deformation due to a disc of ice of radius A and thickness H is given by
the following expressions. For r < A:

w(r) =
ρiH

ρm

[
1 + C1 Ber

(
r

Lr

)
+ C2 Bei

(
r

Lr

)]
, (4.78)

and for r ≥ A:

w(r) =
ρiH

ρm

[
D1 Ber

(
r

Lr

)
+D2 Bei

(
r

Lr

)
+D3 Ker

(
r

Lr

)
+D4 Kei

(
r

Lr

)]
, (4.79)
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where Ber(x), Bei(x), Ker(x) and Kei(x) are Kelvin functions of zero order, Lr = (D/ρmg))1/4

is the radius of relative stiffness, and D is the flexural rigidity. The constants Ci and Di are
given by

C1 = aKer′(a),
C2 = −aKer′(a),
D1 = 0,
D2 = 0,
D3 = aBer′(a),
D4 = −aBer′(a).

(4.80)

Here, the prime indicates the first spatial derivative of the Kelvin functions.

4.4.3 Relaxing asthenosphere model

If a fluid mantle is selected, it adjusts instantly to changes in lithospheric loading. However, a
relaxing mantle is also available.

4.5 Time Step Ordering

Relative to Glimmer-CISM 1.x, the order of operations on each time step has been somewhat
reorganized in CISM2.0. This was done for consistency with the ordering of operations used
in Glissade and to eliminate discrepancies between time levels applied in the model and the
time levels written in output files. These changes have only a minor impact on model
results, but do result in output that will not be an exact match between the two
model versions for the same configuration and initial conditions.

While unlikely to be of much interest to the average user, particularly if you are not migrating
from Glimmer-CISM 1.x, the details of these changes follow. Specifically, in Glimmer-CISM 1.x,
for a given time step, H is advanced in time relative to T and v, and, because a complete solve
occurs even at the initial time, the output for the initial time is different than the input for the
prognostic variables H and T , even though no time step has occurred at that point.

In Glimmer-CISM 1.x, the time-stepping loop is organized as follows:

glide_initialise(): init T, H, v

do while (t < tend)

glide_tstep_p1(): solve T

glide_tstep_p2(): solve v, H

glide_tstep_p3(): calculate some diagnostic variables, write output for time t

advance time

end do

This results in the following relation between the state of model variables and the time level at
which they are output:

Output time: 0 1 2
T 1 2 3
H 1 2 3
v 0 1 2

In CISM 2.0, the time-stepping loop is now organized as follows:

initialize modules

initial diagnostic solve of v (and any other diagnostic variables like upper surface)

write output for time 0

do while (t <= tend)

advance time
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solve column physics: T = f(H,T)

solve prognostic variables: advection of H=f(H,v), T=f(H,v)

solve diagnostic variables: v=f(H,T)

write output for time t

end do

This results in the following relation between the state of model variables and the time level at
which they are output:

Output time: 0 1 2
T 0 1 2
H 0 1 2
v 0 1 2



Chapter 5

Introduction to Higher-Order Ice
Dynamics

5.1 Higher-Order Dynamics in CISM

5.1.1 Basics

The main distinction between so-called higher-order models and 0-order (or “shallow ice”)
models is that higher-order models attempt a closer approximation to solving the nonlinear
Stokes equations. This usually means incorporating some approximation of horizontal-stress
gradients (along-flow stretching or compression and across-flow shearing) in addition to the
vertical stress gradients that are accounted for in shallow ice models (Figure 5.1). This is
important for several reasons:

• For the ice-sheet regions of greatest interest – e.g. ice streams, ice shelves, and other
regions of fast flow – horizontal-stress gradients are at least as important as vertical stress
gradients. To model the flow accurately in these regions, higher-order models are required.

• The shallow-ice approximation, applied to situations in which there is basal sliding, gives
rise to a singularity in the vertical velocity. Models compute the vertical velocity by
integrating the incompressibility equation:

∂w

∂z
= −∂u

∂x
− ∂v

∂y
. (5.1)

If there is a jump from no sliding in one grid cell to sliding in an adjacent cell, the horizontal
velocity gradients at the bed will depend on the grid spacing; the horizontal gradients (and
through incompressibility, the vertical velocity gradient and thus the vertical velocity) will
become increasingly large as the grid spacing decreases. Obviously, this should be avoided.

• Near the grounding line (the boundary between grounded and floating ice), horizon-
tal rather than vertical stresses often control the flow. Incomplete knowledge of the
stresses makes it unlikely that shallow ice models will ever be able to accurately sim-
ulate grounding-line advance and retreat.

• In some regions of very slow flow, like ice divides, horizontal-stress gradients are important
or dominant. Ice cores are often recovered at ice divides, and flow modeling is important
for interpreting ice core records and using information (such as layer thickness) to infer
the past flow history in the region. In order to model that flow correctly, one must include
horizontal stresses. (At an ice divide the surface slope is ∼0, in which case vertical stress

49



50 CHAPTER 5. INTRODUCTION TO HIGHER-ORDER ICE DYNAMICS

Figure 5.1: The gravitational stress available to move the ice is the driving stress, indicated
in green. Because the ice is assumed to be in equilibrium, the sum of the other stresses is
equal to (i.e., must balance) the gravitational driving stress. In the 0-order model (shallow-ice
approximation) the driving stress is assumed to be balanced by basal drag alone. In higher-
order models, this restriction is relaxed and the balance of stresses now includes lateral and/or
longitudinal stresses. Because these stresses must be computed based on conditions outside the
local ice column, the model becomes significantly more complex.

gradients that drive deformation in 0-order models are also ∼0. In reality, deformation
is not 0 at ice divides, but is controlled by horizontal stretching rather than vertical
shearing).

The term “higher-order” comes from scaling analyses of the Stokes equations for which a
scaling parameter λ = H/L (the ratio of the thickness to the horizontal length scale of interest)
is used to assign importance to the various terms. Shallow ice models retain only terms of order
0 while higher-order models also retain terms of order 1 (and possibly more) (Figure 5.2).

5.1.2 Available schemes

• The most fundamental higher-order scheme is the full set of nonlinear Stokes equations.
Because of the computational burden, many large-scale 3D models solve lower-order ap-
proximations of the Stokes equations (Figure 5.3). However, several groups have made
significant advances in Stokes modeling (e.g. the ELMER-Ice effort; Gagliardini et al.
(2013)). Current DOE-funded efforts include implementation of a nonlinear Stokes model
on unstructured grids (Leng et al., 2012).

• Probably the most long-lived higher-order approximation in glaciology is the shallow-shelf
approximation (or SSA) describing flow within an ice shelf. While not truly “higher-order”
when only applied to ice shelf flow, it can provide nearly equivalent results to “true”
higher-order models in cases where basal drag is small but non-zero (e.g., for modeling
the flow of ice streams). The SSA was developed and made popular by Douglas MacAyeal
(e.g., Macayeal (1989)). Its main disadvantage is that it is not fully 3D, as it assumes
uniform velocity throughout the ice thickness driven only by horizontal stress gradients.
It is adequate for describing fast flow in many parts of ice sheets, such as ice shelves and
some ice streams. In these regions, not resolving vertical gradients is a computational
advantage.

• The SSA equations are actually a depth-averaged form of a more general higher-order
model, commonly referred to as the “Blatter-Pattyn model” (Blatter (1995); Pattyn
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Figure 5.2: Stokes-flow (top) and first-order (bottom) constitutive equations, which relate
stresses to strain rates (and in turn to velocity gradients). τ is the deviatoric stress tensor,
I is the identity tensor, P is the pressure, and η is the effective ice viscosity. The strain
rate tensor is given by the term in parentheses on the right-hand side of the equation. For
the first-order approximation (bottom), the bold terms from the Stokes equations are assumed
negligible.

(2003)). Blatter-Pattyn dynamics, synonymous with and more formally described as the
“first-order accurate Stokes approximation”1, are implemented in CISM’s default higher-
order dynamical core, Glissade.

• Another formally first-order accurate Stokes approximation, which might be considered
“quasi” three-dimensional, is the so-called “L1L2” approximation (Schoof and Hindmarsh,
2010). This model combines a two-dimensional SSA solve and a one-dimensional (column)
SIA solve in a mathematically rigorous way. The model solution, from a combination of
SSA (for approximating membrane stresses) and SIA (for vertical shear stresses) solutions,
mimics a fully 3D, higher-order model solution but at a fraction of the computational cost.

• Several “hybrid” schemes exist that are also computationally cheaper than the Blatter-
Pattyn model. These are similar to the L1L2 model in spirit, but combine solutions to
the SSA and SIA models in a heuristic fashion. Bueler and Brown (2009) and Pollard and
Deconto (2009) describe large-scale models using distinct hybrid approaches.

Review papers by Schoof and Hewitt (2013) and Kirchner et al. (2011) go into a fair amount
of detail about the various ice flow modeling approximations, their derivations, and their appli-
cability.

5.1.3 Shallow-ice vs. higher-order models: practical differences

There are large differences between shallow-ice and higher-order models in (1) how the momen-
tum equations (the dynamics, or stress balance) are solved and (2) how the information derived
from that solution (the kinematics, or velocity fields) is used to evolve the ice sheet geometry
in time. There are two main reasons for these differences:

1See Schoof and Hindmarsh (2010) and Dukowicz et al. (2010) for a more complete scaling analysis and
derivation of the first-order Stokes approximation.
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Figure 5.3: The relationship between several common varieties of ice sheet modesl. Complexity
increases along the vertical axis.

• The numerical solution of the dynamical equations is fundamentally different. For the
shallow-ice case, we need only local information (surface elevation and thickness) to solve
for the velocity as a function of depth in a single column of ice. We do this pointwise for
each location on the model domain (in map view), which is a relatively easy numerical
problem. Each column of velocities leads to a tridiagonal matrix that is easy to invert (i.e.,
to solve for the velocities). This problem is embarrassingly parallel, since each column of
unknown velocities results in a tridiagonal matrix that can be solved on a single processor.
For higher-order models, however, the solution at any point also depends on the solution
at neighboring points (in map view), leading to an elliptic system of equations in which
every velocity must be solved for simultaneously with every other velocity. The result
is a much larger system of equations, which are more difficult to solve on one processor
and far more difficult to solve on multiple processors. Because large-scale higher-order
model applications (e.g., whole-ice-sheet models) require efficient, robust solution and
parallelization techniques, this is an active area of current research.

• The equations governing dynamics AND evolution in a shallow-ice model can be recast as
a nonlinear diffusion equation for ice thickness. A single system of equations is solved to
calculate the velocity field and evolve the ice sheet geometry. For higher-order models, we
must first solve the momentum balance equations to obtain the velocity field, and then
use some other scheme to evolve the ice thickness.

These differences imply that a higher-order model must be built in a fundamentally different
way than a shallow-ice model. Most recent development work on CISM has focused on higher-
order dynamics.

Using the constitutive law from the lower panel of Figure 5.2, the equations describing 3D
higher-order flow2 are:

x :
∂

∂x

(
2η

(
2
∂u

∂x
+

∂v

∂y

))
+

∂
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+

∂v
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∂y
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(5.2)

2Specifically, the first-order accurate Stokes approximation discussed above. These will be derived in more
detail in Section 5.2.
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Figure 5.4: Observation-based balance velocities for Greenland (left) and depth-averaged speed
from higher-order CISM (right) with basal sliding coefficients optimized to match the balance
velocities (after Price et al. (2011)).

In these equations we can point out several important differences between shallow-ice and
higher-order models:

1. The third term on the left-hand side represents the vertical diffusion of horizontal veloci-
ties. In a shallow-ice model, this term alone accounts for all ice dynamics and balances the
entire body force in the x direction (the term on the right-hand side). Since the velocity
gradients are only in the vertical direction, the solution is local (in map view).

2. The first-order equations must be solved for each of a set of horizontal layers (the number
of which is defined by the resolution in the vertical, here dz). These layers communicate
with each other through the vertical diffusion term.

3. The first and second sets of terms on the left-hand side represent the resistance to the
body-force term from “membrane stresses” (i.e., stresses arising from horizontal velocity
gradients). These horizontal gradients make the problem elliptic and non-local. The
absence of membrane stresses in the shallow-ice momentum balance is the primary reason
for their failure to realistically simulate the flow in outlet glaciers, ice streams, and ice
shelves.

Other complications arise when we account for boundary conditions at the lateral margins of
the domain and at the upper and lower ice surfaces. We describe both the governing equations
and the boundary conditions in more detail below.

5.2 Higher-Order Momentum Balance

CISM’S higher-order dynamics scheme (some output from which is shown in Figure 5.4) is
discussed in more detail in the following sections. First we describe the derivation of the
equations themselves, followed by a discussion and derivation of the boundary conditions. We
then describe generic solution methods for the nonlinear system of equations, followed by a brief
discussion of the solution of the thickness evolution equation.
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The higher-order scheme is based on the 3D first-order accurate Stokes approximation (often
referred to as the “Blatter-Pattyn” model). The starting point is the nonlinear Stokes equations:

x :
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

− ∂P

∂x
= 0,

y :
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

− ∂P

∂y
= 0,

z :
∂τxz
∂x

+
∂τzy
∂y

+
∂τzz
∂z

− ∂P

∂z
= ρig,

(5.3)

where P is the pressure and τ is the deviatoric stress tensor. The latter is given by τij =
σij + Pδij , where σ is the full stress tensor.

There are a number of ways to argue that, due to the shallowness of ice sheets (i.e., the
small value of H /L, where H is the thickness and L is a relevant horizontal length scale), the
Stokes equations can be reduced to the following first-order approximation:

x :
∂τxx
∂x

+
∂τxy
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+
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= 0,
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z :
∂τzz
∂z

− ∂P

∂z
= ρg.

(5.4)

The arguments supporting this reduction are fairly complex and are based on either a variational
analysis or an asymptotic analysis (see Schoof and Hindmarsh (2010) and Dukowicz et al. (2010)
for details).

The third (vertical) balance equation in (5.4) can be integrated vertically to give an expres-
sion for the pressure:

P = ρg (s− z) + τzz(z). (5.5)

This is simply a statement that the full vertical normal stress is balanced by the hydrostatic
pressure (the so-called hydrostatic assumption). This expression can be substituted into the
horizontal pressure gradient terms above to remove pressure from the equations. For example,
for the x component of velocity we have

∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

=
∂

∂x
[ρg (s− z) + τzz(z)]

∂τxx
∂x

− ∂τzz
∂x

+
∂τxy
∂y

+
∂τxz
∂z

= ρg
∂s

∂x

(5.6)

Using the incompressibility constraint (5.1) and the assumption that stress and strain are aligned
we can write

τzz = −τxx − τyy. (5.7)

Taking the gradient of (5.7) with respect to x, we can rewrite the vertical normal deviatoric
stress in terms of horizontal normal deviatoric stresses:

− ∂τzz
∂x

= − ∂

∂x
(−τxx − τyy) =

∂τxx
∂x

+
∂τyy
∂x

. (5.8)

Substituting (5.8) into (5.6), we obtain
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∂

∂x
(2τxx + τyy) +

∂τxy
∂y

+
∂τxz
∂z

= ρg
∂s

∂x
. (5.9)

Similarly, the y horizontal balance equation is

∂

∂y
(2τyy + τxx) +

∂τxy
∂x

+
∂τyz
∂z

= ρg
∂s

∂y
. (5.10)

At this point we have removed the vertical balance equation entirely; it has been incorporated
into the horizontal balance equations through incompressibility.

Next we write these equations in terms of the velocities for which we are ultimately solving.
Stresses and velocities are linked through the constitutive law for ice, which relates strain rates
to stresses (here we assume Nye’s generalization of Glen’s law), and through the definition of
the strain rate tensor, which relates strain rates to velocity gradients:

1. τij = Bε̇
1−n
n

e ε̇ij , B = B(T )

2. ε̇ij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
3. 2ε̇e = ε̇ij ε̇ij

4. η ≡ 1

2
Bε̇

1−n
n

e

5. τij = 2ηε̇ij

(5.11)

In order, the five expressions above give:

1. Glen’s flow law3, where B = A
−1
n is the temperature dependent rate factor

2. The definition of the strain-rate tensor in terms of velocity gradients

3. The definition of the effective strain rate, ε̇e, a norm of the strain-rate tensor

4. A definition of the “effective viscosity” (after rearranging some terms in (1))

5. Items (1)-(4) allow us to write the relationship between stress and strain in a standard
“Newtonian” way, but with a non-Newtonian (nonlinear) viscosity.

Taking these definitions into the stress balance equations (5.9) and (5.10) and expanding in
terms of strain rates and effective viscosity, we have (for the x direction only):

x : 2
∂

∂x
(2ηε̇xx) +

∂

∂x
(2ηε̇yy) +

∂

∂y
(2ηε̇xy) +

∂

∂z
(2ηε̇xz) = ρg

∂s

∂x
, (5.12)

Replacing strain-rate components with velocity gradients, we obtain

x :
∂

∂x

(
4η

∂u

∂x
+ 2η

∂v

∂y

)
+

∂

∂y

[
η

(
∂u

∂y
+

∂v

∂x

)]
+

∂

∂z

(
η
∂u

∂z

)
= ρg

∂s

∂x
. (5.13)

An analogous expression gives the y-direction momentum balance:

y :
∂

∂y

(
4η

∂v

∂y
+ 2η

∂u

∂x

)
+

∂

∂x

[
η

(
∂u

∂y
+

∂v

∂x

)]
+

∂

∂z

(
η
∂v

∂z

)
= ρg

∂s

∂y
. (5.14)

These are the basic equations to be discretized and solved.

3Technically, we are using the inverse form of the flow-law here.
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5.3 Higher-Order Model Boundary Conditions

We now carry out an approximate derivation of the boundary conditions in a higher-order
scheme. By “approximate” we mean that some of the derivation is guided by physical intuition
and reasonable arguments, rather than rigorous mathematics. In the end, we derive the same
set of equations as when following the more rigorous approach (e.g., Dukowicz et al. (2010)).
We will consider the boundary conditions in three parts: (1) the free surface BC, (2) the basal
traction BC, and (3) lateral BCs.

5.3.1 Stress-free surface

At the upper ice surface, a stress-free boundary condition is applied. The traction vector Ti

must be continuous across the ice sheet surface and, assuming that atmospheric pressure and
surface tension are small, we have

Ti = −Ti(boundary) ≈ 0,

Ti = σijnj = σi1n1 + σi2n2 + σi3n3 = 0,
(5.15)

where the ni are the components of the outward-facing, unit normal vector in Cartesian coor-
dinates.

For a function F(x,y,z) = z – f(x,y) = 0, where z = f(x,y) defines the surface, the gradient
of F(x,y,z) gives the components of the surface normal vector. For the case of the ice sheet
surface, s = f(x, y) and the surface normal is given by

ni =

(
− ∂s

∂x
,−∂s

∂y
, 1

)
1

a
, (5.16)

where

a =

√(
∂s

∂x

)2

+

(
∂s

∂y

)2

+ 1. (5.17)

Eq. (5.15) gives three equations that must be satisfied at the free surface:

i = x : Tx = σxxnx + σxyny + σxznz = 0,

i = y : Ty = σyxnx + σyyny + σyznz = 0,

i = z : Tz = σzxnx + σzyny + σzznz = 0.

(5.18)

Expanding the z equation and expressing stresses in terms of strain rates and pressures, where
η is the effective viscosity defined above, gives

(2ηε̇zx)nx + (2ηε̇zy)ny + (2ηε̇zz − P )nz = 0. (5.19)

Solving for the pressure gives

Pnz = (2ηε̇zz)nz + (2ηε̇zx)nx + (2ηε̇zy)ny. (5.20)

Expanding in terms of velocity gradients and normal vector components, we find

P = 2η
∂w

∂z
−
(
η
∂u

∂z

)
∂s

∂x
−
(
η
∂v

∂z

)
∂s

∂y
, (5.21)

where we have made the usual first-order approximation that
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∂w

∂x
=

∂w

∂y
≈ 0. (5.22)

and also assumed a ≈ 1.
We use this expression for the pressure and expand the two horizontal boundary condition

expressions

i = x : Tx = σxxnx + σxyny + σxznz = 0,

i = y : Ty = σyxnx + σyyny + σyznz = 0,
(5.23)

in terms of velocity gradients and the effective viscosity to obtain

x̂ : −2η
∂u

∂x

∂s

∂x
− η

(
∂u

∂y
+

∂v

∂x

)
∂s

∂y
+ η

∂u

∂z
=

− 2η
∂w

∂z

∂s

∂x
+ η

∂u

∂z

[
∂s

∂x

∂s

∂x

]
+ η

∂v

∂z

[
∂s

∂y

∂s

∂x

]
,

ŷ : −2η
∂v

∂y

∂s

∂y
− η

(
∂u

∂y
+

∂v

∂x

)
∂s

∂x
+ η

∂v

∂z
=

− 2η
∂w

∂z

∂s

∂y
+ η

∂u

∂z

[
∂s

∂x

∂s

∂y

]
+ η

∂v

∂z

[
∂s

∂y

∂s

∂y

]
.

(5.24)

In both these expressions, the terms in square brackets are ∼ 0 (because slopes on ice sheets
are small and the slope squared is exceedingly small). From continuity, we also have

∂w

∂z
= −∂u

∂x
− ∂v

∂y
. (5.25)

Using this expression for the normal vertical velocity gradient and removing the terms in square
brackets, our two horizontal BC expressions become

x̂ : −2η
∂u

∂x

∂s

∂x
− η

(
∂u

∂y
+

∂v

∂x

)
∂s

∂y
+ η

∂u

∂z
= 2η

(
∂u

∂x

∂s

∂x
+

∂v

∂y

∂s

∂x

)
,

ŷ : −2η
∂v

∂y

∂s

∂y
− η

(
∂u

∂y
+

∂v

∂x

)
∂s

∂x
+ η

∂v

∂z
= 2η

(
∂u

∂x

∂s

∂y
+

∂v

∂y

∂s

∂y

)
.

(5.26)

Moving terms to one side and dividing through by the effective viscosity η, we arrive at the
final form of the first-order, free surface boundary conditions

x̂ : 4
∂u

∂x

∂s

∂x
+

∂u

∂y

∂s

∂y
+ 2

∂v

∂y

∂s

∂x
+

∂v

∂x

∂s

∂y
− ∂u

∂z
= 0,

ŷ : 4
∂v

∂y

∂s

∂y
+

∂v

∂x

∂s

∂x
+ 2

∂u

∂x

∂s

∂y
+

∂u

∂y

∂s

∂x
− ∂v

∂z
= 0.

(5.27)

5.3.2 Specified basal traction

Derivation of the basal boundary condition follows that above for the free surface except that

1. The right-hand side of the equation is not zero, but rather consists of an assumed basal
traction vector with components

τbi = (τbx, τby) . (5.28)
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2. The outward-facing normal vector components now consist of horizontal gradients in the
basal surface (with a resulting sign switch on the x, y, z components relative to the upper
surface).

3. the effective viscosity does not disappear from the equations when we divide through.

Making these substitutions, we obtain the first-order basal boundary conditions for a speci-
fied basal traction:

x̂ : 4
∂u

∂x

∂b

∂x
+

∂u

∂y

∂b

∂y
+ 2

∂v

∂y

∂b

∂x
+

∂v

∂x

∂b

∂y
− ∂u

∂z
=

τbx
η

,

ŷ : 4
∂v

∂y

∂b

∂y
+

∂v

∂x

∂b

∂x
+ 2

∂u

∂x

∂b

∂y
+

∂u

∂y

∂b

∂x
− ∂v

∂z
=

τby
η

.

(5.29)

We assume that basal traction is linearly related to basal sliding velocity through a positive
traction parameter, β, such that

τbx = −βu|z=b , τby = −βv|z=b . (5.30)

The minus sign in front of the β indicates that the traction vector is oriented parallel to and in
the opposite direction of the sliding velocity vector.

Substituting this expression into (5.29) gives the final horizontal boundary conditions at the
ice sheet base:

x̂ : 4
∂u

∂x

∂b

∂x
+

∂u

∂y

∂b

∂y
+ 2

∂v

∂y

∂b

∂x
+

∂v

∂x

∂b

∂y
− ∂u

∂z
+

(
β

η

)
u = 0,

ŷ : 4
∂v

∂y

∂b

∂y
+

∂v

∂x

∂b

∂x
+ 2

∂u

∂x

∂b

∂y
+

∂u

∂y

∂b

∂x
− ∂v

∂z
+

(
β

η

)
v = 0.

(5.31)

The use of a linear traction parameter as in (5.30) can be modified to implement basal friction
laws that are a function of effective pressure (ice overburden pressure minus water pressure at
the bed) and generally are nonlinear in the sliding velocity. Two such basal friction laws are
implemented in CISM. For friction laws that are nonlinear in sliding velocity, β in (5.30) becomes
a function of sliding velocity. This is implemented by lagging the value of sliding velocity used
to calculate an “effective” β in the fixed-point iterations used to solve the momentum balance.

The first is a Weertman-style friction law (Weertman, 1957, 1964) modified to include an
effective pressure dependence (Bindschadler, 1983; Budd et al., 1979). Notation here follows
the summary by Cuffey and Paterson (2010, p.240, eq. 7.17). The form of the friction law is:

ub = kτb
pN−q, (5.32)

which can be rearranged for τb as:

τb = k
−1
p ub

1
pN

q
p , (5.33)

where k is a friction coefficient based on thermal and mechanical properties of ice and is inversely
related to bed roughness. Cuffey and Paterson (2010) suggest values of p = 3 and q = 1, making
the basal friction nonlinear in velocity.

One problem with (5.32) is that it allows for unbounded basal traction. CISM also includes
a physically-based basal friction law for sliding over hard beds that allows for cavitation and
bounded basal drag (Schoof, 2005). In this law, the friction is related to the velocity and
effective pressure by

τb = C

(
ub

ub +NnΛ

)1/n

N, Λ =
λmaxA

mmax
. (5.34)
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In Eq. 5.34, C is a Coulomb friction coefficient, and λmax and mmax are the wavelength (m)
and maximum slope, respectively, of the dominant bedrock bumps. Near cavitation (i.e., when
effective pressure approaches 0 at high water pressure), the friction law becomes a Coulomb
friction law of the form τb = CN . Alternatively, at large effective pressures (i.e., low water

pressure), the friction law takes a power law form, τb ∝ u
1/n
b . The representation of bump

geometry in the friction law is at a sub-grid scale and is not explicitly resolved by the model.
The release version of CISM does not currently include a hydrology model that computes

effective pressure, so at present the effective pressure fields must be input as data to use these
two basal friction laws.

5.3.3 Specified basal yield stress

The above implementation of a specified basal traction can be altered to simulate sliding over
a sediment-covered bed for which the sediment has a plastic or “Coulomb friction” rheology.
That is, sliding does not occur below the specified yield stress of the underlying material (e.g., a
water-saturated subglacial till). When the yield stress, τ0 is reached, sliding occurs at a rate that
maintains but does not exceed that yield stress. Consider the x–direction boundary condition
in (5.29), written out in terms of basal stress components:

x̂ : 4η
∂u

∂x

∂b

∂x
+ η

∂u

∂y

∂b

∂y
+ 2η

∂v

∂y

∂b

∂x
+ η

∂v

∂x

∂b

∂y
− η

∂u

∂z
= τbx,

τbx ≈ τ0 = τ0

(
u

|u|

)
= τ0

(
u√

u2
0 + v20 + γ

)
.

(5.35)

In this expression, u is the x component of the basal sliding velocity from the current
iteration, u0 and v0 are components from the previous iteration, and γ is a regularization
constant (a small number to avoid division by zero during early iterations). As the solution
converges, velocities at the current and previous iteration are nearly equal, and the expression
in parentheses approaches 1, in which case the basal stress and yield stress are approximately
equal.

We can accommodate this plastic behavior in our earlier framework by treating β as nonlinear
and dependent on the velocity:

τbx = −βu,

β ≡ τ0√
u2
0 + v20 + γ

,

τbx = −

(
τ0√

u2
0 + v20 + γ

)
u.

(5.36)

This expression for nonlinear β can be substituted in the expression (5.31) for the basal bound-
ary conditions. Figure 5.5 shows an example of this type of boundary condition for the case of
an idealized ice stream simulated by CISM.

5.3.4 Lateral boundary conditions

Currently, the only significant lateral boundary condition implemented in CISM is that for
floating ice; the depth-averaged stress resulting from an adjacent column of ocean water is
applied at the location of an ice shelf (or ice tongue) front. The derivation largely follows
those for the free surface and specified basal traction boundary conditions, except that the
surface normal vectors, nx and ny, are taken as lying entirely in the x, y plane (i.e., they are
perpendicular to a vertical shelf front). Thus we have
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Figure 5.5: Idealized ice stream with plastic-bed sliding. Top panel shows a schematic of an
idealized ice stream, frozen at the margins and thawed within the ice stream (flow is out of
the page). Bottom panel (color) shows a modeled, idealized ice stream (flow is from left to
right) with a yield stress of 5 kPa within the ice stream and much larger than 5 kPa outside of
it. Bottom left shows the ice stream speed (m/yr) and the bottom right shows the basal drag
(kPa). Within the ice stream, basal drag is equal to the yield stress. Outside the ice stream,
stress transfer to the lateral margins results in basal drag that is much larger than the yield
stress (and also much larger than the driving stress).
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x̂ : 4η
∂u

∂x
nx + η

∂u

∂y
ny + η

∂u

∂z
nz = −2η

∂v

∂y
nx − η

∂v

∂x
ny + ρg (s− z)nx − Sx,

ŷ : 4η
∂v

∂y
ny + η

∂v

∂x
nx + η

∂v

∂z
nz = −2η

∂u

∂x
ny − η

∂u

∂y
nx + ρg (s− z)ny − Sy.

(5.37)

Here, Sx and Sy are source terms from the pressure due to ocean water (to be defined below),
and ρg (s− z) comes from including the first-order vertical stress balance:

∂σzz

∂z
=

∂τzz
∂z

− ∂P

∂z
= ρg (integrate w.r.t. z),

P = ρg (s− z) + τzz,

P = ρg (s− z) + 2ηε̇zz = ρg (s− z) + 2η

(
−∂u

∂x
− ∂v

∂y

)
,

(5.38)

with ρ being the ice density. In the last step above we have used the constitutive relation
and incompressibility to expand the vertical, normal-deviatoric stress in terms of the effective
viscosity and horizontal-normal strain rates. We calculate the source terms Sx and Sy as the
depth-averaged stress at the ice shelf front due to the pressure of ocean water there. This value
is given by

Si =

[
1

H

1

2
ρwg (H − hf )

2

]
ni =

[
1

2
ρwgH

(
ρ

ρw

)2
]
ni, hf = H

(
1− ρ

ρw

)
, (5.39)

where i=x,y, ni is the shelf-front normal vector, H is the ice thickness, hf is the “freeboard”,
or ice thickness above flotation, and ρw is the density of ocean water. Because we have taken a
depth average for this source term, we take a depth average of the term ρg (s− z) above, which
is 1

2ρgH.
Combining these two terms and inserting them in the horizontal boundary condition expres-

sions above gives

x̂ : 4η
∂u

∂x
nx + η

∂u

∂y
ny + η

∂u

∂z
nz =

− 2η
∂v

∂y
nx − η

∂v

∂x
ny +

[
−1

2
H

(
ρ

ρw

)2

ρwg +
1

2
ρgH

]
nx,

ŷ : 4η
∂v

∂y
ny + η

∂v

∂x
nx + η

∂v

∂z
nz =

− 2η
∂u

∂x
ny − η

∂u

∂y
nx +

[
−1

2
H

(
ρ

ρw

)2

ρwg +
1

2
ρgH

]
ny,

(5.40)

which can be rearranged to

x̂ : 4
∂u

∂x
nx +

∂u

∂y
ny +

∂u

∂z
nz + 2

∂v

∂y
nx +

∂v

∂x
ny =

ρgH

2η

(
1− ρ

ρw

)
nx,

ŷ : 4
∂v

∂y
ny +

∂v

∂x
nx +

∂v

∂z
nz + 2

∂u

∂x
ny +

∂u

∂y
nx =

ρgH

2η

(
1− ρ

ρw

)
ny.

(5.41)

For an ice shelf, the surface and basal velocities are equal, in which case the vertical velocity
gradient terms are ∼ 0, giving the final form of the lateral boundary conditions:
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x̂ : 4
∂u

∂x
nx +

∂u

∂y
ny + 2

∂v

∂y
nx +

∂v

∂x
ny =

ρgH

2η

(
1− ρ

ρw

)
nx,

ŷ : 4
∂v

∂y
ny +

∂v

∂x
nx + 2

∂u

∂x
ny +

∂u

∂y
nx =

ρgH

2η

(
1− ρ

ρw

)
ny.

(5.42)

5.3.5 Summary

All the boundary conditions above have a similar form. In fact, all that differs among the equa-
tions for the free surface, the specified basal traction, and the lateral shelf boundary condition
is (1) the definition of the normal vectors and (2) the existence and definition of a source term.
Here are the x–direction equations again for the three cases:

x̂ : 4
∂u

∂x

∂s

∂x
+

∂u

∂y

∂s

∂y
+ 2

∂v

∂y

∂s

∂x
+

∂v

∂x

∂s

∂y
− ∂u

∂z
= 0,

x̂ : 4
∂u

∂x

∂b

∂x
+

∂u

∂y

∂b

∂y
+ 2

∂v

∂y

∂b

∂x
+

∂v

∂x

∂b

∂y
− ∂u

∂z
=

τbx
η

,

x̂ : 4
∂u

∂x
nx +

∂u

∂y
ny + 2

∂v

∂y
nx +

∂v

∂x
ny =

ρgH

2η

(
1− ρ

ρw

)
nx.

(5.43)

In the first equation (free surface), the normals are related to the ice sheet surface slope and the
source term is zero (which allows us to divide through by the effective viscosity and remove it
from the equations). In the second equation (specified basal traction), the normals are related
to the bedrock slopes and the source term is related to the assumed relationship between the
basal shear stress and the basal sliding rate. In the last equation, the normals are defined by
the shape of the ice-shelf front in map view, the vertical velocity gradient terms are absent, and
the source term is related to the pressure from the adjacent column of ocean water.

In CISM’s earlier developmental dycore, Glam, these boundary conditions were implemented
using finite differences, leading to significant complexity. The current dycore, Glissade, solves
for ice velocity using a finite-element approach, in which boundary conditions are handled
more simply. For example, the surface boundary condition is a “natural” BC that is satisfied
automatically. See, e.g., Dukowicz et al. (2010) for details.

5.4 Numerical Solution of Higher-Order Equations

This section describes numerical methods for solving the higher-order equations discussed above.
More specific details are given in Chapter 6.

5.4.1 Governing matrix equations

We would like to solve the stress-balance equations (5.13) and (5.14) for the horizontal velocity
components u and v. Any number of standard methods (e.g., finite differences, finite volumes,
or finite elements) can be used to discretize these governing equations: i.e., to re-formulate them
from their continuous, PDE form to a discontinuous, piecewise, algebraic approximation based
on a specific computational mesh. In the limit, as the mesh spacing goes to zero, the difference
between the solution to the actual PDE and its algebraic approximation also goes to zero. The
Glissade dynamical core uses the Finite Element Method (FEM) to discretize the governing
equations, as discussed in Chapter 6. The result of the discretization is a set of linear algebraic
equations that can be written in matrix form. An example is given below, where the coefficients
of u and v are contained in block matrices A, given by
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[
Auu Auv

Avu Avv

] [
u
v

]
=

[
bu

bv

]
,

Auuu+Auvv = bu, Avuu+Avvv = bv.

(5.44)

Here the uu subscript denotes block matrices containing coefficients for gradients of u in the
equation for the x component of velocity (i.e., u). The subscript uv denotes block matrices
containing coefficients for gradients of v in the equation for the x component of velocity (and
similarly for the vu and vv subscripts). On the right-hand side, the subscripts u and v are
attached to the geometric source terms for the x and y components of velocity, respectively.

5.4.2 Treating nonlinearity through a fixed-point iteration

The nonlinearity of the equations—the fact that the matrix coefficients (in particular, the effec-
tive viscosity) depend on the velocity (or more specifically, the velocity gradients)—is handled
through a fixed-point iteration. A general fixed-point iteration for a vector of unknowns u can
be written as

uk = B
(
uk−1

)
, (5.45)

where k is the current iteration index and B is a matrix operation performed on the components
of u obtained at the previous iteration, k − 1. The fixed point occurs when the values of u at
k and k − 1 are equal to within some given tolerance, at which point the iteration process is
halted. For a Picard iteration, which is used in Glissade, the matrix coefficients with a velocity
dependence are simply based on the velocities from the previous iteration. In other words,
velocities obtained during iteration k− 1 are used to calculate the strain rates appearing in the
expression for effective viscosity at iteration k.

Accounting for the Picard iteration on the effective viscosity, the final form of the matrix
equations solved by Glissade becomes

[
Ak−1

uu Ak−1
uv

Ak−1
vu Ak−1

vv

] [
uk

vk

]
=

[
bk
u

bk
v

]
,

Ak−1
uu uk +Ak−1

uv vk = bk
u, Ak−1

vu uk +Ak−1
vv vk = bk

v,

These equations form a linear system; for the solution at any particular iteration k, the matrix
coefficients that depend on the velocity components u and v are held frozen during the solution.
This linear system can be solved using a variety of methods. For large, sparse systems, the
preconditioned conjugate gradient (PCG) method or some related method (e.g., preconditioned
BiCG or GMRES) is generally the most efficient. (Glissade forms a symmetric positive-definite
matrix, as required for the PCG method. Auu and Avv are symmetric, and Auv = AT

vu.) In
this case the linear system is solved not exactly, but to within some small tolerance of the true
solution.

5.5 Thickness Evolution in Higher-Order Models

5.5.1 Conservation of mass

As mentioned previously, conservation of mass for an ice sheet can be expressed by

∂H

∂t
= −∇ · (UH) +B, (5.46)
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where U = (U, V ) is the 2D, depth-integrated velocity vector, H is the ice thickness, UH is
the 2D ice flux vector, and B is the sum of surface and basal mass balance terms. The change
in thickness per unit time is given by the negative of the flux divergence plus a source term.
The minus sign in front of the divergence (terms in parentheses on the right-hand side) ensures
sensible behavior: consider a section of the ice sheet where the thickness is nearly uniform and
there is no accumulation or ablation. If the velocity gradient along the flow is negative (the ice
is slowing down), then we expect local thickening (left-hand side of the equation is > 0), and if
the ice is speeding up along flow, we expect local thinning. This is the equation that needs to
be solved to calculate the evolution of the ice sheet geometry.

5.5.2 A diffusive approach

For the case of a shallow-ice model, U and V are expressed in terms of ice thickness and elevation
gradients, in which case the problem can be recast as a diffusion equation in ice thickness. In
1D, (5.46) becomes

∂H

∂t
=

∂

∂x

(
D

∂s

∂x

)
+B, D =

2A

n+ 2
(ρg)

n
Hn+2

∣∣∣∣ ∂s∂x
∣∣∣∣n−1

, (5.47)

where the diffusivity D is nonlinear (because it depends on the solution H), A is the rate factor
in Glen’s flow law, n is the power-law exponent, s is the ice surface elevation, and ρ and g are
the ice density and the acceleration due to gravity. Importantly, we need only local information
in order to solve the above equation. If the velocity cannot be solved locally, as in the case of
higher-order models, we cannot easily use the above formulation to solve ice sheet evolution. In
an attempt to use this form and retain a diffusion-solution approach to the problem (diffusion
problems generally have favorable numerical properties), we could try the following approach
(again, in 1D):

∂H

∂t
=

∂

∂x

(
D

∂s

∂x

)
+B, D = UH

(
∂s

∂x

)−1

, (5.48)

where the U in the expression for D is the depth-integrated velocity field from the higher-order
model. This is the approach initially taken by Pattyn (2003) in one of the first higher-order
modeling studies to deal with this particular problem. Notice that ice sheet surface slope is in
the denominator of the diffusivity. As slopes become smaller (as they tend to do in fast-flowing
ice streams and ice shelves), the diffusivity grows larger, approaching infinity as the slope goes
to zero. The faster velocities in these regions appear in the numerator of the diffusivity, also
making it larger. This is a severe restriction because, for explicit schemes, the diffusive CFL
condition requires that

∆t <
(∆x)

2

2D
, (5.49)

where ∆t is the time step required for numerical stability and ∆x is the grid spacing. As the
diffusivity goes to infinity (i.e., for faster flows and shallower slopes), the stable time step goes
to zero. Thus in practice, this approach has proven very difficult to use for calculating ice sheet
evolution in the dynamically interesting areas of ice sheets. An alternate approach is needed.

5.5.3 Advection schemes

An alternate approach is to solve the evolution equation using an advection scheme. Numeri-
cally, advection schemes can be more problematic than diffusion schemes, but in cases like this
one, they are difficult to avoid. One of the simplest advection schemes is a first-order, upwind-
advection scheme (as above, “first-order” here refers to first-order accurate), and we will outline
the implementation of such a scheme below.
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Figure 5.6: Staggered grid in two dimensions, showing scalars (like thickness, H) at grid cell
centers and velocity components, U and V , at grid cell edges. This is a “C” grid. Another
staggered-grid possibility is a “B” grid, in which both velocity components live at the grid cell
corners. While CISM uses a B grid, averaging of corner velocities to edges allows one to express
them on a C grid, if necessary.

Most ice sheet models (and fluid dynamics models in general) perform calculations on a
“staggered” grid of the type shown below in Figure 5.6, where scalar components (e.g., temper-
ature, pressure, and thickness) live on one grid, and velocity components live on a grid that is
staggered by 1/2 grid cell in the horizontal direction. (This is essential for numerical stability
for reasons not discussed here).

A control volume (or finite volume) approach to solving the equation

∂H

∂t
= −

(
∂ (UH)

∂x
+

∂ (V H)

∂y

)
+B (5.50)

would be to integrate the equation over a control volume centered on the scalar values (Figures
5.6 and 5.7). Ignoring source terms for now (assume B = 0), and assuming flow in the x
direction only (assume V = 0) we have

∂H

∂t
= − 1

∆y∆x

n∫
s

e∫
w

∂ (UH)

∂x
dxdy = − 1

∆y∆x
(HUe −HUw)∆y. (5.51)

The “east” and “west” (subscripts e and w) faces of the control volume are shown in Figure
5.7.

In the above equation, we have deliberately left it vague as to which value of H is being
advected across the east and west interfaces, into or out of the volume. This is where the term
“upwinding” comes in – we choose the scalar value to advect across the interface based on an
upwinding criterion. If, for example, the flow at interface e is from left to right (U > 0), we
would advect the value of H at P out of the volume centered at P and into the volume centered
at E. If, on the other hand, the flow at e was from right to left (U < 0), we would advect the
value of H at E into the volume at P and out of the volume at E.

The product of velocity, thickness, and the grid spacing at each interface gives a volume flux
in units of cubic meters per year. The sum of the volume fluxes over the total number of faces
being considered (two in this case, but four for the 2-dimensional case) gives the total volume
flux in (total>0) or out (total<0) of the volume. When this number is divided by the area
of the volume, the result is the mean thickness change in that volume, per unit time, that is
required to maintain conservation of mass.
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Figure 5.7: Staggered grid in two dimensions, showing locations of interfaces and control volume
dimensions. Interfaces e, w, n and s connect the volume centered at P with those volumes to
the east, west, north, and south (E, W, N, and S ).

5.5.4 Explicit vs. implicit evolution schemes

Is this an explicit or implicit scheme? If we discretize the right-hand side of the primary equation
in time we get

∂H

∂t
= −∇ · (UH) +B,

Ht=1 −Ht=0

∆t
≈ −∇ · (UH) +B.

(5.52)

This can be rearranged to

Htt=1 ≈ Ht=0 + [−∇ · (UH) +B]t=0 ∆t. (5.53)

The thickness at the new time step t = 1 is a function only of variables evaluated at the previous
time step t = 0. Thus, the scheme is explicit and, as such, is subject to the advective CFL
condition for stability:

∆t <
∆x

U
. (5.54)

Essentially, this means that we cannot take such a large time step that we advect mass through
more than one grid cell per time step.

There is not much more to a first-order advection scheme other than extending it to two
dimensions for non-zero V. The finite volume formulation guarantees that it will conserve mass
(i.e., the mass moving out of one grid cell across a given cell face is equal to the mass moving
into an adjacent grid cell across that face). There are many “higher-order” advection schemes
(e.g., the incremental remapping scheme used in CISM and described in Chapter 6), but they
are mainly based on the principles outlined here and rely on corrections to the simple upwind
assumption in order to gain more accuracy.



Chapter 6

Higher-Order Ice Dynamics:
Glissade Dynamical Core

6.1 Introduction

CISM includes a parallel, higher-order dynamical core called Glissade1, the successor to the
Glide shallow-ice dycore. Like Glide, Glissade solves equations for conservation of momen-
tum (i.e., an appropriate approximation of Stokes flow), mass, and internal energy. Glissade
numerics, however, differ substantially from Glide numerics:

• Velocity: Glide is limited to the shallow-ice approximation, whereas Glissade can solve
several Stokes approximations, as described in Section 6.2. These include a 3D first-
order Blatter-Pattyn solver (the most accurate and complex scheme) as well as simpler
shallow-ice, shallow-shelf, and “L1L2” solvers. Unlike Glide, which computes the velocity
using finite-difference techniques, Glissade uses a more robust and flexible finite-element
method.

• Temperature: To evolve the ice temperature, Glide solves a prognostic equation that in-
corporates horizontal advection as well as vertical heat diffusion and internal dissipation.
In Glissade, temperature advection is handled by the transport scheme, and a separate
module solves for vertical diffusion and internal dissipation. The vertical solver, described
in Section 6.3, is local; each ice column calculation is independent of other column calcu-
lations.

• Mass and tracer transport: Glide solves a diffusion equation for tranport of mass (i.e.,
thickness); this equation incorporates the local shallow-ice velocities. Since Glissade solves
for higher-order flow that may have a large advective (as oppposed to diffusive) component,
a different approach is needed. Glissade has two mass- and energy-conserving transport
options, described in Section 6.4: incremental remapping (the more complex and accurate
scheme) and first-order upwind. These schemes transport mass and internal energy in the
horizontal direction, followed by a vertical remapping to sigma coordinates.

Glissade numerics are described in detail below.

1The name “Glissade” was originally an acronym, but as with “Glimmer” and “Glide” the acronym is rarely
used. It can be pronounced either American–style (gliss–AID) or French–style (gliss–AHD).

67
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6.2 Velocity Solver

Glissade computes the ice velocity by solving an appropriate approximation of the Stokes equa-
tions, given the 2D surface elevation and thickness fields, the 3D temperature field, and relevant
boundary conditions. The directory libglissade contains the primary higher-order velocity
module, glissade velo higher.F90, along with supporting modules for the various solver op-
tions. Section 6.2.1 describes assembly and solution of the matrix problem for the 3D first-order
Blatter-Pattyn approximation. The following sections discuss simpler approximations, including
the shallow-ice, shallow-shelf, and L1L2 approximations.

6.2.1 Blatter-Pattyn approximation

The basic equations of the Blatter-Pattyn approximation in Cartesian coordinates, repeated
from Section 5.2, are

x :
∂

∂x

(
2η

(
2
∂u

∂x
+ η

∂v

∂y

))
+

∂

∂y

(
η

(
∂u

∂y
+

∂v

∂x

))
+

∂

∂z

(
η
∂u

∂z

)
= ρg

∂s

∂x
,

y :
∂

∂y

(
2η

(
2
∂v

∂y
+ η

∂u

∂x

))
+

∂

∂x

(
η

(
∂u

∂y
+

∂v

∂x

))
+

∂

∂z

(
η
∂v

∂z

)
= ρg

∂s

∂y
,

(6.1)

where u and v are the components of horizontal velocity, η is the effective viscosity, s is the ice
surface elevation, ρ is the density of ice (assumed constant), and g is gravitational acceleration.

As in Glide, the equations are discretized on a structured 3D mesh. In the map plane
the mesh consists of rectangular cells. These cells form an unstaggered 2D grid of dimension
(nx, ny) (thus the number of cells is (nx)(ny)), together with a staggered grid of dimension
(nx− 1, ny − 1). The corners of each cell (where four rectangles meet) are called vertices. The
vertical levels of the mesh are based on a terrain-following sigma coordinate system. We define
σ = (s − z)/H, where H is the ice thickness, with σ = 0 at the top surface and σ = 1 at the
bed. There are nz levels in the vertical direction, with nz − 1 layers between these levels. An
element is the region associated with a particular cell and layer; there are (nx)(ny)(nz − 1)
elements on the mesh. A node is a point where eight elements intersect (or where four elements
intersect at the upper or lower surface). There are (nx− 1)(ny − 1)(nz) nodes on the mesh.

Scalar 2D fields such as H and s are defined for each cell. Scalar 3D fields such as ice
temperature T lie at the center of each element (i.e., at the midpoint of each layer associated
with each cell). Gradients of 2D scalar fields (e.g., the surface slope ∇s) are defined at vertices.
The velocity components u and v live at nodes.

For problems solved in parallel, the domain is partitioned among multiple processors. Let
nxlocal and nylocal be the number of locally owned cells on each processor. Each processor holds
data for two rows of halo cells (i.e., cells belonging to other processors) surrounding the block of
locally owned cells. Thus the 2D grid on a given processor has dimensions (nxlocal+2, nylocal+2).
Each locally owned cell is associated with a locally owned vertex lying at the northeast (upper
right) corner of the cell.

An active cell is a cell that borders a locally owned vertex, whose ice thickness exceeds a
minimum threshold. Each active cell is associated with a column of nz−1 active elements. (All
the data in a given column resides on a single processor.) An active vertex is any vertex of an
active cell. Each active vertex is associated with nz active nodes, including nodes at the surface
and bed.

The effective viscosity is defined in each active element by

η ≡ 1

2
A

−1
n ε̇

1−n
n

e , (6.2)

where A is the temperature-dependent rate factor in Glen’s flow law, and ε̇e is the effective
strain rate, given in the Blatter-Pattyn approximation by
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ε̇2e = ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy + ε̇2xz + ε̇2yz, (6.3)

where

ε̇ij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (6.4)

To compute A(T ), we assume an Arrhenius relationship:

A(Tpmp) = ae−Q/RTpmp , (6.5)

where Tpmp is the pressure melting point temperature, a is a temperature–independent material
constant (given by Paterson and Budd (1982)), Q is the activation energy for creep and R is
the universal gas constant.

Given T , s, H, and an initial guess for u and v, the problem is to solve Eq. (6.1) for u and
v at each active node. (At inactive nodes we set u = v = 0.) This problem can be written in
the form

Ax = b, (6.6)

or more fully, [
Auu Auv

Avu Avv

] [
u
v

]
=

[
bu

bv

]
.

(6.7)

Eq. (6.7) shows the four parts of the global matrix A, with the solution and right-hand-side
vectors separated into u and v components. In Glissade, A is always symmetric and positive-
definite.

Since A depends (through η) on u and v, the problem is nonlinear and must be solved
iteratively (see Section 5.4.2). For each nonlinear iteration, Glissade computes the 3D η field
based on the current guess for the velocity field and solves a linear problem of the form (6.7).
Then η is updated and the process is repeated until the solution converges to within a given
tolerance. This procedure is known as Picard iteration.

The following sections describe how the matrix equations are assembled and solved.

Assembly

The coupled PDEs (6.1) are discretized using the finite-element method. Here we give a detailed
but non-rigorous description of the method as applied to the Blatter-Pattyn approximation on
the CISM mesh. We refer the reader to standard texts (e.g., Hughes, 2000) for a full discussion
of finite elements.

The PDEs, with appropriate boundary conditions, are converted to a system of algebraic
equations by dividing the full domain into subdomains (i.e., elements), representing the velocity
solution on each element, and integrating over elements. On the CISM mesh, the elements are
hexahedra (rectangles in map view), each of which has eight nodes shared with its neighbors.
The solution is approximated as a sum over basis functions φ. Each active node is associated
with a basis function whose value is φ = 1 at that node, with φ = 0 at all other nodes. The
solution at a point within an element can be expanded in terms of basis functions and nodal
values:

u(x, y, z) =
∑
n

φn(x, y, z)un, v(x, y, z) =
∑
n

φn(x, y, z)vn, (6.8)
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where the sum is over the nodes of the element, un and vn are nodal values of the solution, and
φn varies smoothly between 0 and 1 within the element. The fact that φ = 0 except in a small
region ensures that the sum includes only as many terms as there are nodes per element.

Glissade uses standard finite-element techniques to represent the PDE on each element and
assemble the element equations into a global set of algebraic equations of the form (6.7). The
scheme is formally equivalent to that described by Perego et al. (2012) (henceforth PGB). Eq.
(6.1) can be written as

−∇ · (2ηε̇1) = −ρg
∂s

∂x
,

−∇ · (2ηε̇2) = −ρg
∂s

∂y
,

(6.9)

where

ε̇1 =

2ε̇xx + ε̇yy
ε̇xy
ε̇xz

 , ε̇2 =

 ε̇xy
ε̇xx + 2ε̇yy

ε̇yz

 . (6.10)

(These are Eqs. 12 and 13 in PGB.) We rewrite the equations in weak form (see PGB Eq. 15),
which is obtained by multiplying (6.9) by the basis functions and integrating over the domain,
using integration by parts to eliminate the second derivative:

x :

∫
Ω

2ηε̇1(u, v) · ∇φ1 dΩ +

∫
ΓB

βuφ1 dΓ +

∫
ΓL

pn1φ1 dΓ +

∫
Ω

ρg
∂s

∂x
φ1 dΩ = 0,

y :

∫
Ω

2ηε̇2(u, v) · ∇φ2 dΩ +

∫
ΓB

βuφ2 dΓ +

∫
ΓL

pn2φ2 dΓ +

∫
Ω

ρg
∂s

∂y
φ2 dΩ = 0,

(6.11)

where Ω represents the domain volume, ΓB denotes the lower boundary, ΓL denotes the lateral
boundary (e.g., the calving front of an ice shelf), β is a basal traction parameter, p is the pressure
at the lateral boundary, and n1 and n2 are components of the normal to ΓL. These equations
can also be obtained from a variational principle as described by Dukowicz et al. (2010).

The four terms on the LHS of (6.11) describe internal ice streses, basal friction, lateral
pressure, and the gravitational driving force, respectively. Next we describe how these terms
are summed over elements and assembled into the global matrix A and right-hand side vector
b.

Internal ice stresses. We start with the internal stress term, which is the most complex.
We rewrite the first term on the LHS of (6.11) in terms of velocity components:

x :

∫
Ω

2η
[
2∂u
∂x + ∂v

∂y
1
2

(
∂u
∂y + ∂v

∂x

)
1
2
∂u
∂z
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∂φ
∂y

∂φ
∂z

 ,

y :
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Ω

2η
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1
2

(
∂u
∂y + ∂v

∂x

)
2∂v
∂y + ∂u

∂x
1
2
∂v
∂z
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∂φ
∂x

∂φ
∂y

∂φ
∂z

 ,

(6.12)

where brackets are used for row vectors and braces for column vectors. Glissade evaluates (6.12)
for each active element. Recall that hexahedral elements have eight nodes, with u and v to be
determined at each active node. Inserting the velocity expressions (6.8) in (6.12), we obtain
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x :
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(6.13)

Each row or column vector has eight terms, one for each node of the element. These terms
can be evaluated to form a set of four 8x8 element matrices. Each row of an element matrix
is associated with u or v at a given node. The columns in that row contain terms linking that
node to u or v at the other nodes of the element (with the diagonal term linking the node to
itself).

In the x component of (6.13), the terms that multiply uj are given by∫
Ω

η

(
4
∂φi

∂x

∂φj

∂x
+

∂φi

∂y

∂φj

∂y
+

∂φi

∂z

∂φj

∂z

)
dΩ (6.14)

Letting i and j range from 1 to 8, (6.14) gives the 64 terms of the 8x8 element matrix Kuu,
which links the u value at each node to the u values at all eight nodes. Similarly, the 64 terms
of element matrix Kuv, which links u at each node to v at each of the eight nodes, are given by∫

Ω

η

(
2
∂φi

∂x

∂φj

∂y
+

∂φi

∂y

∂φj

∂x

)
dΩ (6.15)

Likewise, two 8x8 matrices are associated with the y component of (6.13). The terms of Kvu,
which connects v at each node to u at each of eight nodes, are given by∫

Ω

η

(
2
∂φi

∂y

∂φj

∂x
+

∂φi

∂x

∂φj

∂y

)
dΩ (6.16)

Finally, the terms of Kvv, which links v at each node to v at each of eight nodes, are given by∫
Ω

η

(
4
∂φi

∂y

∂φj

∂y
+

∂φi

∂x

∂φj

∂x
+

∂φi

∂z

∂φj

∂z

)
dΩ (6.17)

Because of the symmetry of the underlying PDEs, Kuu and Kvv are symmetric, and Kuv =
Kvu

T . Note that Kvv can be obtained from Kuu, and Kvu from Kuv, by exchanging x
and y. The terms containing z (i.e., the vertical shear stresses associated with the shallow-ice
approximation) appear only in Kuu and Kvv. The terms containing x and y (i.e., the membrane
stresses) appear in all four element matrices.

Eqs. (6.14)–(6.17) lie at the heart of the code. Together with the expressions for the
effective viscosity η (discussed below), these expressions contain the physical contents of the
Blatter-Pattyn approximation.

In the weak form of the equations, each of the 64 coefficients in each element matrix must
be integrated over the element. (Since φ varies over the element, the integrands in (6.14)–
(6.17) have a different value at each point.) This is done for a given element by evaluating the
integrand at each of eight quadrature points and summing over quadrature points. We first have
to specify the form of the basis functions, then transform the basis functions to the geometry
of the element (which is irregular in the vertical because of the sigma coordinate) and evaluate
the basis function derivatives at the quadrature points.

Glissade uses trilinear basis functions defined on a reference cube. This cube is centered at
the origin (0, 0, 0) in local reference coordinates (x̂, ŷ, ẑ). The eight nodes of the reference cube
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are located at (x̂, ŷ, ẑ) = (±1,±1,±1). By convention, nodes 1–4 are the nodes of the lower
face, proceeding counterclockwise from the southwest corner (x̂, ŷ) = (−1,−1). Nodes 5–8 are
the nodes of the upper face, also moving counterclockwise from the southwest corner. Thus we
have

φ1 = (1− x̂)(1− ŷ)(1− ẑ)/8,

φ2 = (1 + x̂)(1− ŷ)(1− ẑ)/8,

φ3 = (1 + x̂)(1 + ŷ)(1− ẑ)/8,

φ4 = (1− x̂)(1 + ŷ)(1− ẑ)/8,

φ5 = (1− x̂)(1− ŷ)(1 + ẑ)/8,

φ6 = (1 + x̂)(1− ŷ)(1 + ẑ)/8,

φ7 = (1 + x̂)(1 + ŷ)(1 + ẑ)/8,

φ8 = (1− x̂)(1 + ŷ)(1 + ẑ)/8.

(6.18)

For each n we have φn = 1 at a single node, with φn = 0 at the other nodes.
The integrands in (6.14)–(6.17) are written in terms of real Cartesian coordinates (x, y, z)

rather than reference coordinates (x̂, ŷ, ẑ). Spatial derivatives in real coordinates are related to
derivatives in reference coordinates by

∂φn

∂x̂

∂φn

∂ŷ

∂φn

∂ẑ

 =


∂x
∂x̂

∂y
∂x̂

∂z
∂x̂

∂x
∂ŷ

∂y
∂ŷ

∂z
∂ŷ

∂x
∂ẑ

∂y
∂ẑ

∂z
∂ẑ




∂φn

∂x

∂φn

∂y

∂φn

∂z

 = [J ]


∂φn

∂x

∂φn

∂y

∂φn

∂z

 , (6.19)

where [J ] is the Jacobian of the transformation between coordinate systems. Given the finite-
element expansion

x =
∑
n

φnxn, (6.20)

along with the spatial derivatives of φ at (x̂, ŷ, ẑ) (which are easily derived from (6.18)), we can
compute [J(x̂, ŷ, ẑ)] as

[J ] =



8∑
n=1

∂φn

∂x̂ xn

8∑
n=1

∂φn

∂x̂ yn
8∑

n=1

∂φn

∂x̂ zn

8∑
n=1

∂φn

∂ŷ xn

8∑
n=1

∂φn

∂ŷ yn
8∑

n=1

∂φn

∂ŷ zn

8∑
n=1

∂φn

∂ẑ xn

8∑
n=1

∂φn

∂ẑ yn
8∑

n=1

∂φn

∂ẑ zn

 . (6.21)

We then invert (6.19) to obtain the basis function derivatives in terms of (x, y, z):
∂φn

∂x

∂φn

∂y

∂φn

∂z

 = [J−1]


∂φn

∂x̂

∂φn

∂ŷ

∂φn

∂ẑ

 . (6.22)

The left-hand side of (6.22) contains the spatial derivatives appearing in (6.14)–(6.17).
Eqs. (6.14)–(6.17) also contain the viscosity η, which is computed at each quadrature point.

In the Blatter-Pattyn approximation, η is given by (6.2); it is a function of the flow factor A and
the effective strain rate defined by (6.3). We approximate A by its value at the element center.
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The (squared) effective strain rate, ε̇2e, is evaluated at each quadrature point by summing over
strain-rate components. The x components are given by

∂u

∂x
=

8∑
n=1

∂φn

∂x
un,

∂v

∂x
=

8∑
n=1

∂φn

∂x
vn, (6.23)

and similarly for the y and z components. The nodal velocities in (6.23) are values from the
previous iteration; otherwise the resulting system of equations would be nonlinear.

We now have the information needed to compute the integrands (6.14)–(6.17) at quadra-
ture points. To integrate over a hexahedron, we take a weighted sum of the values at each of eight
quadrature points. These points are located at reference coordinates (x̂, ŷ, ẑ) = (±1/

√
3,±1/

√
3,±1

√
3).

To evaluate an integral of the form ∫
Ω

η

(
∂φi

∂z

∂φj

∂z

)
dΩ (6.24)

over element volume Ω, we compute the sum over quadrature points

8∑
p=1

wpηp

(
∂φi

∂z

∂φj

∂z

)
p

|Jp|, (6.25)

where |J | is the determinant of the Jacobian (6.21). For this choice of quadrature points, each
point has wp = 1.

The terms of the element matrices Kuu,Kuv,Kvu and Kvv are then inserted into the corre-
sponding global matrices Auu,Auv,Avu and Avv. This is mostly a matter of bookkeeping. For
example, the first row of Kuu corresponds to a particular node of element (k, i, j) (specifically,
the node with indices (k − 1, i − 1, j − 1), given our convention for numbering nodes within
elements). This row is mapped to a row of the global matrix Auu, and each of the eight terms
in the row is associated with a column of Auu. Glissade determines the correct column and
adds the Kuu term to the corresponding term in Auu. This process proceeds until the code has
looped over all the active elements and filled the global matrices.

If written in full, each global matrix would have as many rows and columns as there are
active nodes. These matrices, however, are sparse, with a maximum of 27 nonzero terms per
row (corresponding to a node and its 26 nearest neighbors in a 3D hexahedral lattice). Glissade
therefore assembles and stores global matrices of dimension (27, nz, nx−1, ny−1). The 27 terms
of the first dimension are indexed such that each index has a geometric meaning. Suppose we
are filling columns for the matrix row corresponding to node (k, i, j). Then, by convention,
index 1 refers to the node with coordinates (k− 1, i− 1, j− 1), index 14 refers to the node itself
(i.e., the diagonal term of the row), and index 27 refers to the node at (k + 1, i+ 1, j + 1) (and
similarly for the other indices). After assembly, these matrices can be converted as needed to
the form required by a particular solver.

The remaining assembly consists of evaluating the other terms in (6.11) (i.e., the basal and
lateral boundary conditions and the gravitational forcing) and implementing Dirichlet boundary
conditions, if applicable. We consider these in turn.

Basal boundary conditions. At the basal boundary we assume a friction law of the form

τb = −βub. (6.26)

The coefficient β is defined at each vertex and can vary spatially. If β depends on the velocity,
as in some friction laws, then it is calculated using the velocity from the previous iteration. See
Sections 5.3.2 and 5.3.3 for a detailed discussion of basal traction in higher-order models.

The basal boundary terms to be evaluated in (6.11) are
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x :

∫
ΓB

βuφ1dΓ,

y :

∫
ΓB

βvφ2dΓ.

(6.27)

The basal face of each cell is a rectangle. To integrate over a rectangle, we sum over terms at
four quadrature points. These points lie at (x̂, ŷ) = (±1/

√
3,±1/

√
3) in a reference square with

center (0, 0) and vertices (±1,±1). (This reference square is the 2D analog of the reference cube
discussed above.) We define four bilinear basis functions on the square (cf. (6.18)):

φ1 = (1− x̂)(1− ŷ)/4,

φ2 = (1 + x̂)(1− ŷ)/4,

φ3 = (1 + x̂)(1 + ŷ)/4,

φ4 = (1− x̂)(1 + ŷ)/4.

(6.28)

Given these basis functions and their spatial derivatives, we can compute the Jacobian for the
transformation between the reference square and the rectangular cell face, using the 2D versions
of (6.21) and (6.22):

[J ] =


4∑

n=1

∂φn

∂x̂ xn

4∑
n=1

∂φn

∂x̂ yn

4∑
n=1

∂φn

∂ŷ xn

4∑
n=1

∂φn

∂ŷ yn

 , (6.29)

{∂φn

∂x

∂φn

∂y

}
= [J−1]

{∂φn

∂x̂

∂φn

∂ŷ

}
. (6.30)

The integrand at a quadrature point has the form

βφiφj , (6.31)

where the second φ term arises from the finite-element expansion of u at a quadrature point:

u =

4∑
n=1

unφn. (6.32)

We determine β at quadrature points from the values at cell vertices:

β =
4∑

n=1

βnφn. (6.33)

The integral of (6.31) over a cell is then computed as a sum over quadrature points:

4∑
p=1

wpβp(φiφj)p|Jp|, (6.34)

where wp = 1 for each point. This procedure generates a 4x4 matrix describing the connections
between each node and its neighbors in the cell. Since the x term in (6.27) contains u but not
v, and the y term contains v but not u, we form 2D matrices Kuu and Kvv, but not Kuv and
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Kvu. Each term of Kuu is then inserted into the global matrix Auu, and similarly for Kvv and
Avv.

This assembly procedure tends to smooth the β field. If it is necessary to resolve sharp
discontinuities in β, as in the stream test problem of Section 8.2.3, Glissade allows an alternate
assembly procedure in which the terms in a given row of the matrix depend only on β at the
vertex associated with that particular row of the matrix. See option which ho assemble beta

in Section 7.3.

Lateral boundary conditions. The lateral boundary terms in (6.11) are

x :

∫
ΓL

pn1φ1 dΓ,

y :

∫
ΓL

pn2φ2 dΓ.

(6.35)

Since these terms are independent of u and v, they contribute to the load vectors bu and bv

on the right-hand side of (6.7). They are integrated over the lateral faces of floating cells that
border the ocean. (Grounded cells are assumed to have no lateral forcing.)

The lateral faces bordering the ocean are quadrilaterals that can be mapped to a reference
square. The integral over each face is found by summing over four quadrature points. Basis
functions are given by (6.28), and the Jacobian of the reference square is computed using (6.29).
We evaluate the ice thickness H at each quadrature point using

H =
4∑

n=1

Hnφn, (6.36)

where the Hn are nodal values. The integrands have the form pnφ, where pn is the vertically
averaged net pressure normal to the ice edge. (We use the vertically averaged pressure to avoid
dealing with vertical shear at the ice edge.) The net pressure is equal to the pressure directed
outward from the ice toward the ocean by the weight of the ice, minus the (smaller) pressure
directed inward from the ocean to the ice by the hydrostatic water pressure. The outward
pressure is obtained by integrating ρig(s− z)dz from s−H to s and then dividing by H; it is
given by

pout =
ρigH

2
. (6.37)

The inward pressure is found by integrating (−ρwgzdz) from s −H to 0 and then dividing by
H − s; it is given by

pin =
ρwg(s−H)2

2H
(6.38)

Assuming hydrostatic balance, we have s−H = (ρi/ρw)H. Thus (6.38) becomes

pin =
ρigH

2

ρi
ρw

(6.39)

Combining (6.37) and (6.39) gives

pnet =
ρigH

2

(
1− ρi

ρw

)
, (6.40)

directed from the ice to the ocean. The integral of the pressure terms over a lateral face is then
found as a sum over quadrature points:
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4∑
p=1

±wp(pnet)p(φi)p|Jp|, (6.41)

where the sign depends on the orientation of the face. The resulting pressure terms are inserted
into the load vector (either bu or bv, depending on the orientation) in the rows associated with
each of the four nodes of the face.

Gravitational driving stress. The gravitational forcing terms in (6.11) are

x :

∫
Ω

ρg
∂s

∂x
φ1 dΩ,

y :

∫
Ω

ρg
∂s

∂y
φ2 dΩ.

(6.42)

To compute these terms we evaluate ∂s
∂x and ∂s

∂y at each active vertex. A standard centered

approximation at vertex (i, j) is

∂s

∂x
(i, j) =

s(i+ 1, j + 1) + s(i+ 1, j)− s(i, j + 1)− s(i, j)

2∆x
, (6.43)

and similarly for ∂s
∂y . This approximation works well when the ice geometry is fixed but can

cause problems when the geometry is evolving. These problems arise because checkerboard
noise in s (which is common on structured meshes with the velocity at cell vertices) is invisible
to the momentum balance; it is canceled out by the centered averaging in (6.43). Checkerboard
noise can therefore persist and grow. To damp this noise, Glissade can use an upstream average:

∂s

∂x
(i, j) =

1.5(s(i+ 1, j + 1)− s(i, j + 1))− 0.5(s(i+ 1, j + 2)− s(i, j + 2))

∆x
. (6.44)

Here, “upstream” means in the direction of increasing surface elevation. Both (6.43) and
(6.44) are second-order accurate. The default is (6.43), but (6.44) can be chosen by setting
which ho gradient = 1 in the config file (see Section 7.3).

Eqs. (6.43) and (6.44) are ambiguous at the ice margin, where one or more of the four
cells neighboring a vertex are ice-free. (Cells with very thin ice, H < thklim, are considered
ice-free by the velocity solver. CISM’s default value is thklim = 100 m, which is appropriate
for Glide, but Glissade is typically run with thklim = 1 m.) One option is to include all cells,
including ice-free cells, in the gradient. This generally works well for land-based ice but gives
large gradients with excessive ice speeds at floating shelf margins. A second option is to include
only ice-covered cells in the gradient. For example, suppose cells (i, j) and (i, j + 1) have ice,
but cells (1 + 1, j) and (i + 1, j + 1) are ice-free. Then, lacking the required information to
compute a gradient in the x direction, we would set ∂s

∂x = 0. The y gradient would be one-

sided: ∂s
∂y = (s(i, j + 1) − s(i, j))/∆y. This option works well at shelf margins but tends to

underestimate slopes at land margins. A third option is to include in the gradient any neighbor
cells that are either ice-covered or land cells. (Land cells are cells with bedrock topography
above sea level, whether ice-covered or ice-free.) Since this option (which ho gradient margin

= 1) works well for both land and shelf margins, it is the default.

The integrals in (6.42) are over 3D elements. Hence we map each hexahedral element to a
reference cube as described above. Given ∂s

∂x at the nodes of a cell, the surface slope terms at
quadrature points are
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∂s

∂x
=

8∑
n=1

φn

(
∂s

∂x

)
n

,
∂s

∂y
=

8∑
n=1

φn

(
∂s

∂y

)
n

, (6.45)

where the basis functions φ are given by (6.18) and the spatial derivatives are derived from
(6.21) and (6.22). The integral of ρg ∂s

∂xφ over an element is evaluated as a sum over quadrature
points:

8∑
p=1

wpρg

(
∂s

∂x

)
p

(φi)p|Jp|, (6.46)

and similarly for the ∂s
∂y term. Glissade inserts these terms into the load vectors bu and bv.

Dirichlet boundary conditions. Once the matrix has been assembled, it may need to be
adjusted for Dirichlet boundary conditions (i.e., prescribed values of the velocity at certain
nodes). The most common Dirichlet condition is to set u = v = 0 at the bed to enforce a no-slip
boundary condition. (A no-slip condition can also be enforced by setting the basal traction
coefficient β to a very large value, but formally this is not a Dirichlet condition.) Also, it may
be desirable to set u and v to observed values at certain locations, as in the Ross Ice Shelf test
case (Section 8.2.6).

Suppose that at node (k, i, j) we have u = uc and v = vc, where uc and vc are prescribed
values. Let nr be the row of Auu associated with this node, and let nc range over the columns
with nonzero entries in this row. To enforce the Dirichlet condition, we set Auu(nr, nc) =
Avv(nr, nc) = 0 for all values of nc except nc = nr (the diagonal term); we set Auu(nr, nr) =
Avv(nr, nr) = 1. In addition, we set Auv(nr, nc) = Avu(nr, nc) = 0 for all nc, since these two
matrices do not contain any terms on the diagonal of the full global matrix (i.e., A in (6.6)).
On the right-hand side, we set bu(nr) = uc and bv(nr) = vc. These operations convert the
matrix rows associated with node (k, i, j) to the equations 1 · u = uc, 1 · v = vc, which clearly
have the desired solutions uc and vc.

A further step is needed to maintain matrix symmetry, as required when using a precon-
ditioned conjugate gradient solver. Consider the term Auu(nr, nc), where nc is a specific col-
umn associated with a neighboring node (say, node (k + 1, i + 1, j + 1)). We have already
set Auu(nr, nc) = 0, so we need to set Auu(nc, nr) = 0 to maintain symmetry. The Dirich-
let condition is u(nr) = uc. In the matrix-vector product, the product Auu(nc, nr)u(nr) =
Auu(nc, nr)uc contributes to bu(nc). Thus we can replace bu(nc) with bu(nc)−Auu(nc, nr)uc

and set Auu(nc, nr) = 0 without altering the problem. We do this for all the terms in the
columns associated with node (k, i, j) (i.e., all the terms multiplied by uc or vc in the matrix-
vector product). Thus, both the rows and the columns associated with node (k, i, j) are filled
with zeros, except for the diagonal term, and the full global matrix remains symmetric.

Solving the linear system

Once the matrices and right-hand side vectors have been assembled, we solve the linear problem
(6.7). Glissade supports three kinds of solvers:

• A native Fortran 90 preconditioned conjugate gradient (PCG) solver

• Links to the Sparse Linear Algebra Package (SLAP), with options for the generalized
minimum residual (GMRES) and biconjugate gradient methods

• Links to Trilinos, with options for PCG and GMRES, preconditioned by incomplete lower-
upper (ILU) factorization or a multigrid method

We describe each solver in turn.
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Preconditioned conjugate gradient solver. The native PCG solver works directly with
the assembled matrices Auu, Auv, Avu, and Avv, along with the right-hand side vectors bu

and bv. These matrices are passed to one of two PCG solvers: a “standard” solver or a
Chronopolous-Gear solver. The standard method for solving Ax = b can be summarized as
follows:

• Let x0 denote the initial guess for x (x0 = 0 if no guess is available); r = b − Ax is the
residual vector; d is a conjugate direction vector; M is a preconditioning matrix: α, β, η0,
η1 and η2 are scalars; q and z are work vectors; and (r, z) is the dot product of two vectors.

• r0 = b−Ax0, d0 = 0, η0 = 1

• Do until converged:

⋆ Solve Mz = r for z (the preconditioning step)

⋆ η1 = (r, z)

⋆ β = η1/η0

⋆ d = z + βd

⋆ η0 = η1

⋆ q = Ad

⋆ η2 = (d, q)

⋆ α = η1/η2

⋆ x = x+ αd

⋆ r = r − αq (or periodically, set r = b−Ax and check for convergence)

There are two dot products, one matrix-vector product, and one preconditioning step per it-
eration. The convergence condition is

√
(r, r)/

√
(b, b) < ϵ, where ϵ is a small tolerance (10−8

by default). The convergence check is done every five iterations, as a compromise between the
expense of an extra matrix-vector multiply and that of unnecessary iterations.

This solver works either in serial or in parallel. If run in parallel, the dot products require
global sums, and a halo update for d is needed once per iteration. Halo updates in CISM operate
on 2D arrays with horizontal indices i and j (or 3D/4D arrays with additional indices). This is
the main reason for leaving the global matrices and vectors in standard Fortran arrays, instead
of converting to a sparse matrix storage format such as compressed row storage. In array form,
it is easy to do halo updates of vectors u, v, ru, rv, du, dv, etc.

The PCG solver has two preconditioning options:

• Diagonal (also known as Jacoby) preconditioning, in which the preconditioning matrix
M consists of the diagonal terms of A, so that M is trivial to invert. Convergence with
diagonal preconditioning can be slow.

• Shallow-ice-based preconditioning. In this case M includes only the terms in A that
link a given node to itself and its immediate neighbors above and below. The matrix M
is then tridiagonal, as in the shallow-ice approximation, and can be inverted efficiently.
This preconditioner works well when the physics is dominated by vertical shear and the
horizontal terms are small, but not as well when membrane stresses are important. Since
the preconditioner is local (it consists of independent column solves), it scales well with
an increasing number of processors.

Other preconditioning options could be added in the future. If the existing options are inefficient
for a given problem, it may be better to use Trilinos (see below).
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For small problems on a modest number of processors, the dominant cost is the matrix-vector
multiply required during each iteration. For large problems on many processors, however, the
global sums become increasingly expensive. To reduce the cost of global sums, the standard PCG
algorithm can be replaced by the Chronopoulos-Gear algorithm, which rearranges operations
such that both global sums are done with a single MPI call. We omit the details here, but refer
the reader to the code comments in module glissade velo higher pcg.F90.

SLAP. The Sparse Linear Algebra Package (SLAP) is a set of Fortran routines for solving
sparse systems of linear equations. SLAP was part of the original Glimmer release and is still
used to solve the thickness evolution and temperature advection problems in Glide. It can
also be used to solve higher-order systems in Glissade, using either GMRES or a biconjugate
gradient solver. SLAP, however, is limited to a single processor and thus is unsuited for large
problems.

In order for Glissade to use CISM’s SLAP routines, it must convert the global matrices and
the right-hand-side and solution vectors to a SLAP-friendly format. First (before any matrix
assembly), Glissade assigns a unique integer ID to each active node. Following assembly, the
code loops through the matrices Auu, Auv, Avu and Avv, putting each nonzero entry into a
Fortran derived type containing the row, column and value of such entry. Similarly, the current
solution and the right-hand side are placed in SLAP-friendly vectors. This information is passed
to the SLAP solver and ultimately to the various SLAP subroutines. SLAP returns the velocity
solution and residual vectors, which are copied back into Glissade data structures.

Trilinos. Trilinos is a set of solver packages and related software developed at Sandia National
Laboratories. Under the DOE ISICLES project, the Glam higher-order dycore was parallelized
and linked to Trilinos. The Trilinos links developed for Glam were later adapted for Glissade.
Trilinos has been tested extensively on parallel architectures and has been installed on DOE
high-performance computers where CISM is often run. See Section 2.4.2 for instructions on
building CISM with Trilinos.

A C++ file, libglimmer-trilinos/trilinosGlissadeSolver.cpp, contains procedures
that link Glissade to Trilinos:

• initializetgs sends Trilinos a global ID for each active node.

• insertrowtgs sends Trilinos a row of the matrix (specifically, the global row index, the
number of potentially nonzero column entries, the index and value of each such entry, and
the associated right-hand side term).

• solvevelocitytgs returns the velocity solution.

Various Glissade subroutines gather the information needed by Trilinos. Before assembly,
Glissade computes global IDs for each node (k, i, j) on each processor, along with unique indices
for each unknown (u and v) on each active node. Glissade also computes a logical array of
dimension (27, nz, nx− 1, ny − 1)—the same dimension as the global matrices—whose value is
.true. for the potential nonzero entries. After assembly of Auu, bu, etc., the nonzero matrix
entries are passed to Trilinos, one row at a time. After solution, the Trilinos velocity result is
copied to Glissade data structures.

Trilinos solver options are set in a file called trilinosOptions.xml in the directory where
the code is executed. Among the key settings are the solver type and preconditioner type. The
default solver is Block GMRES, and the default preconditioner is Ifpack, which applies ILU
preconditioning. ILU generally works well for problems where shallow-ice physics is dominant,
but can struggle for shelf-type problems where membrane stresses are dominant. For these
problems the ML preconditioner type, which uses a multigrid method for preconditioning, is
likely to work better. Optimal Trilinos settings for large, complex problems are an area of
active research.

http://trilinos.org
http://www.csm.ornl.gov/ISICLES/
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Choosing among the various solver options is something of an art. The default is native PCG
using the Chronopoulos-Gear algorithm. The PCG solver runs efficiently on most platforms and
scales well. On the other hand, its preconditioning options are limited, so convergence may be
slow for problems with dominant membrane stresses. SLAP solvers are generally robust and
efficient, but are limited to one processor. Trilinos is typically slower than the other solvers,
in part because of the extra cost of setting up Trilinos data structures, as well as the slower
performance of C++ code relative to Fortran on many platforms. On the other hand, Trilinos
contains a vast range of solver options (only a few of which have so far been tested with CISM),
some of which may be more flexible and robust than those implemented in SLAP and the native
PCG solver.

Solving the nonlinear system

Each call to a linear solver (native PCG, SLAP, or Trilinos) returns a solution vector, along
with the number of iterations and the error, defined as

√
(r, r)/

√
(b, b). If the linear solution

fails to converge after the maximum allowed number of iterations (typically 200), the solver
exits with the last computed solution (which may be adequate despite being unconverged).

Then a new global matrix is assembled, using the latest velocity solution to compute the
effective viscosity. The right-hand is adjusted as needed to incorporate Dirichlet boundary
conditions. Glissade then computes the new residual b − Ax. If the L2 norm of the residual
(defined as

√
(r, r)) is smaller than a desired threshold (10−4 by default), the nonlinear system

of equations is considered solved. (An absolute threshold of 10−4 may be too stringent for large
problems. Alternatively, Glissade can use a relative threshold, based on the ratio of the L2 norm
of the residual to the L2 norm of b; see Section 7.3.) Otherwise the linear solver is called again,
until either the solution converges or the maximum number of nonlinear iterations (typically
100) is reached.

As mentioned above, the procedure of updating the matrix with the latest guess for the
solution is known as Picard iteration. The older Glam dycore includes an option to solve the
nonlinear system using a Jacobian-Free Newton-Krylov (JFNK) method. JFNK requires an
extra residual evaluation per nonlinear iteration, but generally converges in fewer iterations
than does the Picard method. Glissade does not yet have a JFNK option.

In addition to the 3D Blatter-Pattyn approximation, Glissade can solve the simpler shallow-
ice and shallow-shelf approximations, as well as the vertically integrated, higher-order “L1L2”
approximation (Schoof and Hindmarsh, 2010). These are described next.

6.2.2 Shallow-ice approximation

SIA: matrix form

By setting which ho approx = 0 in the config file, Glissade’s finite-element solver can be used
as an SIA solver. The shallow-ice equations follow from the Blatter-Pattyn equations if the
horizontal-stress terms are neglected. The SIA analogs of (6.1) are

x :
∂

∂z

(
η
∂u

∂z

)
= ρg

∂s

∂x
,

y :
∂

∂z

(
η
∂v

∂z

)
= ρg

∂s

∂y
,

(6.47)

leading to the following internal stress terms in weak form:
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x :

∫
Ω

2η
∂φi

∂z

(
1

2

[
∂φj

∂z

]
{uj}

)
,

y :

∫
Ω

2η
∂φi

∂z

(
1

2

[
∂φj

∂z

]
{vj}

)
.

(6.48)

These terms are integrated over elements using (6.18) and (6.21) for the 3D basis functions and
Jacobians. The resulting 8x8 element matrices Kuu and Kvv link each node to the eight nodes
of the element, including itself. Since there are no horizontal stress terms, Kuv = Kvu = 0. In
the expression for effective viscosity, the effective strain rate is given by

ε̇2e = ε̇2xz + ε̇2yz. (6.49)

The basal and lateral boundary conditions and gravitational loading are handled just as for the
Blatter-Pattyn case.

The resulting SIA global matrices contain about half as many nonzero terms as the BP
matrices, since Auv = Avu = 0. Each ice column, however, cannot be solved independently
of the others; rather, each node is linked to its horizontal neighbors by terms that arise during
element assembly. As a result, the matrix-based SIA solver is not dramatically faster than the
BP solver. This solver can be useful for code testing but is not practical for productions runs,
since a practical SIA solver should be many times faster than a BP solver. Glissade has a much
faster alternative SIA solver, described next.

SIA: Local form

Glissade’s local shallow-ice solver (in glissade velo sia.F90), is distinct from the finite-
element solvers described in this section. It is local in the sense that u and v in each ice column
are found independently of u and v in all other columns. It resembles the Glide shallow-ice
solver described in Section 4.1. Glide, however, incorporates the velocity solution in a diffusion
equation for ice thickness. Glissade’s local SIA solver computes u and v only, with thickness
evolving separately as described in Section 6.4.

The local SIA solver first computes the basal velocity given the basal traction coefficient tb,
which is defined as in Glide:

ub = tbτb. (6.50)

Note that tb = 1/β, where the higher-order traction coefficient β is defined as in (6.26). There
are several options for setting tb: no sliding (tb = 0); uniform traction (tb = constant); uniform
traction where basal water is present (and no sliding elsewhere); and uniform traction where
the bed is at the pressure melting point, Tb = Tpmp (and no sliding elsewhere). As in Glide, the
basal velocity is proportional to tb and the gravitational driving stress:

ub = −tbρigH̄∇s, (6.51)

where H̄ is the ice thickness interpolated to cell vertices and ∇s is the surface slope at vertices.

To find the interior velocities, we first compute a vertically integrated factor c(σ) for each
level at each cell vertex:

c(σ) = −2(ρg)nH̄n+1|∇s|n−1

σ∫
1

Āσ̃ndσ̃, (6.52)
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where Ā is the flow factor interpolated to vertices, and a tilde distinguishes σ at a particular
level from the integration variable σ̃. (The same term appears in the Glide SIA calculation; see
(4.22).) Discretized in the vertical, this becomes

c(k) = −2(ρg)nH̄n+1|∇s|n−1
k∑

l=nz−1

Āl

(
σl + σl+1

2

)n

(σl+1 − σl) . (6.53)

The factors c(k) are interpolated from cell vertices to edges. The u and v components of velocity
are computed at cell edges as a function of the surface slope:

∆uE(k, i, j) =

k∑
l=nz−1

(
c(k, i, j) + c(k, i, j − 1)

2

)
(s(i+ 1, j)− s(i, j)),

∆vN (k, i, j) =
k∑

l=nz−1

(
c(k, i, j) + c(k, i− 1, j)

2

)
(s(i, j + 1)− s(i, j)).

(6.54)

Here, ∆uE is the u velocity component on the east edge of a cell, relative to the basal velocity,
and similarly for ∆vN on the north edge of the cell.

Finally, we average ∆uE and ∆vN to vertices and add the bed velocities (6.51) to determine
the velocity in the ice column at each vertex:

u(k, i, j) = ub(i, j) +

(
∆uE(k, i, j) + ∆uE(k, i, j + 1)

2

)
,

v(k, i, j) = vb(i, j) +

(
∆vN (k, i, j) + ∆vN (k, i+ 1, j)

2

)
.

(6.55)

For serial problems there are no special advantages to using Glissade’s local SIA solver in
place of Glide. Glissade’s local SIA solver, however, can run on multiple processors, whereas
Glide cannot. For large SIA problems, parallel Glissade can hold more data in memory and
may be faster.

6.2.3 Shallow-shelf approximation

Glissade’s finite-element solver can also be used as a shallow-shelf solver. The SSA equations
can be derived by vertically integrating the 3D Blatter-Pattyn equations. They are valid when
the basal shear stress is small or zero and the velocity is (to a good approximation) vertically
uniform. The shallow-shelf analog of (6.1) is

x :
∂

∂x

(
2η̄H

(
2
∂u

∂x
+ η̄H

∂v

∂y

))
+

∂

∂y

(
η̄H

(
∂u

∂y
+

∂v

∂x

))
= ρg

∂s

∂x
,

y :
∂

∂y

(
2η̄H

(
2
∂v

∂y
+ η̄H

∂u

∂x

))
+

∂

∂x

(
η̄H

(
∂u

∂y
+

∂v

∂x

))
= ρg

∂s

∂y
,

(6.56)

where η̄ is the vertically averaged effective viscosity. The SSA equations in weak form resemble
(6.11), but with internal stress terms

x :

∫
Ω

2η̄H

(
∂φi

∂x

(
2

[
∂φj

∂x

]
{uj}+

[
∂φj

∂y

]
{vj}

)
+

∂φi

∂y

(
1

2

[
∂φj

∂y

]
{uj}+

1

2

[
∂φj

∂x

]
{vj}

))
,

y :

∫
Ω

2η̄H

(
∂φi

∂y

(
2

[
∂φj

∂y

]
{vj}+

[
∂φj

∂x

]
{uj}

)
+

∂φi

∂x

(
1

2

[
∂φj

∂x

]
{vj}+

1

2

[
∂φj

∂y

]
{uj}

))
.

(6.57)
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The resulting element matrices are similar to (6.14)–(6.17), except that the terms containing
∂φi

∂z and
∂φj

∂z are missing, and the viscosity term η is replaced by η̄H. The effective viscosity is
defined as in (6.2), but with a vertically averaged flow factor and with (6.3) replaced by

ε̇2e = ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy. (6.58)

The integrals in (6.57) are taken over 2D cells rather than 3D elements, with basis functions
and Jacobians given by (6.28) and (6.29).

The basal boundary terms are handled as in the 3D Blatter-Pattyn approximation. The
lateral boundary and gravitational forcing terms are computed initially in 3D (as for the Blatter-
Pattyn case), but then are summed in the vertical before being inserted into the 2D right-hand
vectors bu and bv. The solution procedure is the same as for the 3D case, except that the
problem has no vertical dimension. When using the native PCG solver, the shallow-ice-based
preconditioner is inappropriate and the diagonal preconditioner should be used instead.

In short, the SSA problem is similar to the Blatter-Pattyn problem except for the missing
vertical shear terms and the reduction to 2D. The solution is much faster, because the SSA
matrices have roughly 3∗nz times fewer nonzero entries than the Blatter-Pattyn matrices. The
factor of 3 arises from the fact that the BP equations at each level include connections to the
levels above and below, whereas the SSA equations are solved at a single level.

6.2.4 L1L2 approximation

The L1L2 approximation (Schoof and Hindmarsh, 2010) can be derived by vertically integrating
the Blatter-Pattyn equations with the assumption that the horizontal gradients of the membrane
stresses are uniform with depth. (The term “L1L2” is based on the classification scheme of
Hindmarsh (2004).) This assumption leads to a 2D matrix system (like the SSA), which can
be solved much more cheaply than the 3D BP system. The L1L2 approximation is about
as accurate as the BP equations in regions of fast sliding. In regions of little or no sliding,
it reduces to the shallow-ice approximation. Thus it is accurate where the SIA is accurate,
but not in regions of slow sliding and rough bed topography, where the horizontal gradients
of the membrane stresses vary strongly with height. For example, L1L2 performs poorly for
ISMIP-HOM Test A.

Consider the Blatter-Pattyn equations (6.1), written in terms of deviatoric stresses instead
of strain rates:

x :
∂

∂x
(2τxx + τyy) +

∂

∂y
(τxy) +

∂

∂z
(τxz) = ρg

∂s

∂x
,

y :
∂

∂y
(2τyy + τxx) +

∂

∂x
(τxy) +

∂

∂z
(τyz) = ρg

∂s

∂y
.

(6.59)

Assuming that τxx, τyy and τxy are depth-independent, (6.59) can be integrated from b to s to
obtain

x :
∂

∂x

 s∫
b

(2τxx + τyy)dz

+
∂

∂y

 s∫
b

τxydz

− βub = ρgH
∂s

∂x
,

y :
∂

∂y

 s∫
b

(2τyy + τxx)dz

+
∂

∂x

 s∫
b

τxydz

− βvb = ρgH
∂s

∂y
,

(6.60)

where ub and vb are the components of basal velocity, and we have used Leibniz’s rule to move
the partial derivatives outside the integrals and eliminate several boundary terms. Since the

http://en.wikipedia.org/wiki/Leibniz_integral_rule
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deviatoric stresses are depth-independent, they can be written in terms of the basal strain rates.
Taking these strain rates outside the integral, we obtain

x : 2
∂

∂x

(
η̄H

(
2
∂ub

∂x
+

∂vb
∂y

))
+

∂

∂y

(
η̄H

(
∂ub

∂y
+

∂vb
∂x

))
− βub = ρgH

∂s

∂x
,

y : 2
∂

∂y

(
η̄H

(
2
∂vb
∂y

+
∂ub

∂x

))
+

∂

∂x

(
η̄H

(
∂ub

∂y
+

∂vb
∂x

))
− βvb = ρgH

∂s

∂y
,

(6.61)

where the vertically averaged effective viscosity is

η̄ =

s∫
b

ηdz. (6.62)

Note the similarity between (6.61) and (6.56). When (6.56) is vertically integrated and basal
boundary terms are included, it is formally identical to (6.61). Thus the same methods used to
assemble and solve the SSA equations can be applied to the L1L2 equations.

The effective viscosity, however, is treated differently for L1L2. (Here we follow Perego et al.
(2012).) The parallel norm |·||| is defined as

|ε̇|2∥ = ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy (6.63)

and the perpendicular norm |·|⊥ as

|ε̇|2⊥ = ε̇2xz + ε̇2yz. (6.64)

The constitutive law can be written as

ε̇ij = Aτ2e τij , (6.65)

where we assume n = 3. For the L1L2 approximation the effective stress is given by

τ2e = |τ |2∥ + τ̃2⊥, (6.66)

with τ̃⊥ estimated based on the SIA:

τ̃2⊥ = [ρg(s− z)∇s]
2
. (6.67)

Inserting (6.66) in (6.65) and taking the parallel norm gives

|ε̇|∥ = A(|τ |2∥ + |τ |2⊥)|τ |∥. (6.68)

Given |ε̇|∥ from (6.63), equation (6.68) can be written in the form x3 + ax + b = 0, a cubic

equation that can be solved for |τ |∥ using standard techniques. (Of the three roots, the one of
interest is real and positive; the other two are complex conjugates. Glissade currently computes
|τ |∥ only for n = 3, although an iterative scheme for general n could be added later.) The
effective viscosity at depth z is then given by

η =
1

2Aτ2e
, (6.69)

where τe is obtained from (6.66), (6.67) and (6.68). Equation (6.69) follows from (6.65) and the
relation

τij = 2ηε̇ij , (6.70)

which defines the effective viscosity.



6.3. TEMPERATURE SOLVER 85

After solving the 2D L1L2 system for the basal velocity, the velocity profile at each vertex
can be found by vertical integration. First we estimate τxz and τyz in each layer. Since the
depth-independent membrane stresses are determined by the basal velocity, τxz and τyz are now
the only unknowns in (6.59). These equations can be integrated from the top surface (assumed
to be stress-free) to depth z to give

x : τxz(z) = −ρg(s− z)
∂s

∂x
+ 2

∂

∂x

(2∂ub

∂x
+

∂vb
∂y

) h∫
z

ηdz′

+ 2
∂

∂y

(∂ub

∂y
+

∂vb
∂x

) h∫
z

ηdz′

 ,

y : τyz(z) = −ρg(s− z)
∂s

∂y
+ 2

∂

∂y

(2∂vb
∂y

+
∂ub

∂x

) h∫
z

ηdz′

+ 2
∂

∂x

(∂ub

∂y
+

∂vb
∂x

) h∫
z

ηdz′

 ,

(6.71)

where again we use Leibniz’s rule to move the partial derivatives outside the integrals and remove
boundary terms. The bracketed terms are evaluated at cell centers, and then the gradient terms
are computed at nodes using finite-difference formulas (e.g., (6.43)). Given τxz and τyz at each

level, along with |ε̇|2∥ from (6.63), the effective stress is given by

τ2e = 2η |ε̇|2∥ + τ2xz + τ2yz. (6.72)

The velocity components can then be integrated upward from the bed using

x :
1

2

∂u

∂z
= ε̇xz = Aτn−1

e τxz,

y :
1

2

∂v

∂z
= ε̇yz = Aτn−1

e τyz,

(6.73)

which imply

x : u(z) = ub + 2

z∫
b

Aτn−1
e τxzdz,

y : v(z) = vb + 2

z∫
b

Aτn−1
e τyzdz.

(6.74)

6.3 Temperature Solver

As discussed in Section 4.2, the thermal evolution of the ice sheet is given by

∂T

∂t
=

k

ρc
∇2T − u · ∇T − w

∂T

∂z
+

Φ

ρc
, (6.75)

where T is the temperature in ◦C, k is the thermal conductivity of ice, c is the specific heat of ice,
ρ is the density, and Φ is the rate of heating due to internal deformation and dissipation. This
equation describes the conservation of internal energy under horizontal and vertical diffusion
(the first term on the RHS), horizontal and vertical advection (the second and third terms,
respectively), and internal heat dissipation (the last term). Glide solves this equation in module
glide temp.F90. Glissade takes a different approach, dividing the temperature evolution into
separate advection and diffusion/dissipation components. Module glissade temp.F90 solves
for diffusion and internal dissipation:
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∂T

∂t
=

k

ρc
∇2T +

Φ

ρc
, (6.76)

as described in this section. The advective part of (6.75) is described in Section 6.4.

Glissade’s vertical discretization of temperature is also different from that of Glide. In Glide,
T is located at each of nz vertical levels. In Glissade, internal temperatures are located at the
midpoints of the nz − 1 layers. Temperature is also defined at the upper and lower ice surface,
giving a total of nz + 1 temperature points in each column. The upper surface temperature is
denoted by T0 and the lower surface temperature by Tnz.

This convention makes it fairly straightforward to advect temperature conservatively. The
total internal energy in a column is the sum over layers of ρcT∆z, where ∆z is the layer
thickness. This internal energy is conserved under transport (see Section 6.4). T0 and Tnz,
which are determined by the boundary conditions, are associated with infinitesimally thin layers
that do not contain any internal energy.

The following sections describe how the terms in (6.76) are computed, how the boundary
conditions are specified, and how the equation is solved.

6.3.1 Vertical diffusion

Computing the vertical diffusion term requires a discretization for ∇2T . As in Glide (Sec-
tion 4.2.1), we assume that horizontal diffusion is negligible compared to vertical diffusion:

∇2T ≃ ∂2T

∂z2
=

1

H2

∂2T

∂σ2
, (6.77)

where the last equality follows from σ = (s− z)/H.

In σ–coordinates, the central difference formulas for first derivatives at the upper and lower
interfaces of layer k are

∂T

∂σ

∣∣∣∣
σk

=
Tk − Tk−1

σ̃k − σ̃k−1
,

∂T

∂σ

∣∣∣∣
σk+1

=
Tk+1 − Tk

σ̃k+1 − σ̃k
,

(6.78)

where σ̃k is the value of σ at the midpoint of layer k, halfway between σk and σk+1:

σ̃k =
σk+1 − σk

2
. (6.79)

The second partial derivative, defined at the midpoint of layer k, is

∂2T

∂σ2

∣∣∣∣
σ̃k

=

∂T
∂σ

∣∣
σk+1

− ∂T
∂σ

∣∣
σk

σk+1 − σk
(6.80)

Inserting (6.78) in (6.80), we obtain the required vertical diffusion term:

∂2T

∂σ2

∣∣∣∣
σ̃k

=
Tk−1

(σ̃k − σ̃k−1) (σk+1 − σk)
−Tk

(
1

(σ̃k − σ̃k−1) (σk+1 − σk)
+

1

(σ̃k+1 − σ̃k) (σk+1 − σk)

)
+

Tk+1

(σ̃k+1 − σ̃k) (σk+1 − σk)
. (6.81)
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6.3.2 Heat dissipation

In higher-order models the internal heating rate Φ in (6.76) is given by the tensor product of
strain rate and stress:

Φ = ε̇ijτij . (6.82)

The effective strain rate and effective stress (cf. (6.3)) are defined by

ε̇2e =
1

2
ε̇ij ε̇ij , τ2e =

1

2
τijτij . (6.83)

It follows from (6.82) and (6.83) that
Φ = 2ε̇eτe. (6.84)

Eq. (6.70), which defines the effective viscosity, implies

ε̇e =
τe
2η

, (6.85)

which can be substituted in (6.84) to give

Φ =
τ2e
η
. (6.86)

Both terms on the RHS of (6.86) are available to the temperature solver, since the higher-order
velocity solver computes η during matrix assembly and diagnoses τe from η and ε̇ij at the end
of the calculation.

6.3.3 Boundary conditions

The temperature T0 at the upper boundary is set to the surface air temperature Tair. (In
coupled climate applications, T0 may be passed in by the climate model.) The diffusive heat
flux at the upper boundary (defined as positive up) is

F top
d =

k

H

T1 − T0

σ̃1
. (6.87)

(The denominator contains just one term because σ0 = 0.) Optionally, this flux can be returned
to the climate model as a lower boundary condition in the land-surface model.

The lower ice boundary is more complex. For grounded ice there are three heat sources and
sinks. First, the diffusive flux from the bottom surface to the ice interior (positive up) is

F bot
d =

k

H

Tnz − Tnz−1

1− σ̃nz−1
. (6.88)

Second, there is a geothermal heat flux Fg to the lower boundary. This is typically prescribed
as a constant (∼ 0.05 W m−2) or read from an input file. Finally, there is a frictional heat flux
associated with basal sliding, given by (Cuffey and Paterson, 2010, p. 418)

Ff = τb · ub, (6.89)

where τb and ub are 2D vectors of basal shear stress and basal velocity, respectively. With a
friction law of the form (6.26), this becomes

Ff = β
√
u2
b + v2b . (6.90)

If the basal temperature Tnz < Tpmp (where Tpmp = T + 8.7 · 10−4(s − z) is the pressure
melting point temperature), then the fluxes at the lower boundary must balance:



88 CHAPTER 6. HIGHER-ORDER ICE DYNAMICS: GLISSADE DYNAMICAL CORE

Fg + Ff = F bot
d . (6.91)

In other words, the energy supplied by geothermal heating and sliding friction is equal to the
energy removed by vertical diffusion. If, on the other hand, Tnz = Tpmp, then the lower surface
temperature is fixed and the net flux is used to melt or freeze ice at the boundary:

Mb =
Fg + Ff − F bot

d

ρL
, (6.92)

where Mb is the melt rate and L is the latent heat of melting. Melting generates basal water,
which may either stay in place or flow downstream (possibly replaced by water from upstream),
depending on the parameterization chosen in the config file (basal water; see 7.3). We hold
Tnz = Tpmp as long as basal water is present.

For floating ice the basal boundary condition is simpler; Tnz is simply set to the freezing
temperature Tf of seawater. Optionally, a melt rate could also be prescribed at the lower
surface, but this is not currently implemented in CISM.

6.3.4 Vertical temperature solution

Eq. (6.76) can be discretized for an ice layer k as

Tn+1
k − Tn

k

∆t
=

k

ρcH2

[
akT

n+1
k−1 − (ak + bk)T

n+1
k + bkT

n+1
k+1

]
+

Φk

ρc
, (6.93)

where the coefficients ak and bk are given by (6.81), n is the current time level, and n+1 is the
new time level. The vertical diffusion terms are evaluated at the new time level, making the
discretization backward Euler (i.e., fully implicit) in time. A Crank–Nicolson formulation, in
which the temperature terms are evaluated at time n+1/2, is also available. Although Crank–
Nicolson is second-order-accurate in time (compared to first-order for backward Euler), it can
lead to temperature oscillations in thin ice. For this reason, backward Euler is the default.

Eq. (6.93) can be rewritten as

− αkT
n+1
k−1 + (1 + αk + βk)T

n+1
k − βkT

n+1
k+1 = Tn

k +
Φk∆t

ρc
, (6.94)

where

αk =
ak∆t

ρc
, βk =

bk∆t

ρc
. (6.95)

At the upper surface, T0 = Tair. At the lower surface we have either a temperature boundary
condition (Tnz = Tpmp for grounded ice, or Tnz = Tf for floating ice) or a flux boundary
condition:

Ff + Fg −
k

H

Tn+1
nz − Tn+1

nz−1

1− σ̃nz−1
= 0, (6.96)

which can be rearranged to give

− Tn+1
nz−1 + Tn+1

nz =
(Ff + Fg)H (1− σ̃nz−1)

k
. (6.97)

In each ice column the above equations form a tridiagonal system that is easily solved for Tk.
Occasionally, the solution Tk in one or more layers will exceed Tpmp for the layer. If so, we

set Tk = Tpmp and use the extra energy to melt ice internally. This melt is assumed (not very
realistically) to drain immediately to the bed.

If (6.92) applies, we compute Mb and adjust the basal water depth. When the basal water
goes to zero, Tnz is set to a value slightly below Tpmp so that the flux boundary condition will
apply during the next time step.
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6.3.5 Enthalpy model

An alternative vertical temperature solver based on enthalpy is under development. In this
scheme, water that melts internally can be retained in the ice instead of draining instantly to
the bed. The retained water reduces the ice viscosity compared to that of pure ice. Although
CISM includes source code for an enthalpy model, the model is not yet scientifically supported.

6.4 Mass and Tracer Transport

Ice sheet models must solve a transport equation for ice thickness H:

∂H

∂t
+∇ · (HU) = B, (6.98)

where U is the vertically averaged 2D velocity and B is the total surface mass balance. Eq.
(6.98) describes the conservation of ice volume under horizontal transport. With the assumption
of uniform density, volume conservation is equivalent to mass conservation. There is a similar
conservation equation for the internal energy in each ice layer:

∂(hT )

∂t
+∇ · (hTu) = 0, (6.99)

where h is the layer thickness, T is the temperature (defined at the layer midpoint), and u is
the horizontal velocity. If other tracers (e.g., internal water fraction or ice age) are present,
their transport is described by equations of the same form as (6.99). In the discussion below,
everything said about temperature and internal energy applies also to other tracers and the
associated conserved quantities.

Unlike Glide, which solves for mass transport and temperature advection independently,
Glissade solves (6.98) and (6.99) in a coordinated way, one layer at a time. (Advection of
tracers other than temperature is carried out in conjunction with temperature advection.) This
coordination makes it possible to avoid numerical oscillations with undesirable effects, such as
raising T above the melting point. The non–advective terms of the energy equation (6.75) (i.e.,
vertical diffusion and internal dissipation) are handled in a separate vertical column solve, as
described in Section 6.3.

Glissade has two horizontal transport schemes: a first-order upwind scheme and a more
accurate incremental remapping (IR) scheme (Dukowicz and Baumgardner, 2000; Lipscomb
and Hunke, 2004). The transport driver is in glissade transport.F90, and the IR scheme is
in glissade remap.F90. The IR scheme was originally implemented in the Los Alamos sea ice
model, CICE, and has been adapted for CISM. It is fairly complex and is described in detail in
Section 6.4.1.

Following horizontal transport, the mass balance is applied at each surface. Ice is added to
or removed from the top surface depending on the sign of Bb, and similarly is removed from or
added to the basal layer based on the sign of Mb. Any energy that is available for melt after
an ice column has entirely melted is discarded, but in coupled applications could be returned
to the climate model if needed to conserve energy.

After the transport scheme and mass-balance update have been applied, the new layer
thicknesses generally do not have the desired spacing in σ coordinates. A vertical remapping
scheme is used to move ice thickness (and associated tracers) between layers to restore σ layers
in a way that conserves mass and energy. This scheme computes overlaps between the new
layers and the target σ layers. If, for example, part of new layer k overlaps with target layer
k + 1, the mass and internal energy are computed for the overlap region, with the assumption
that temperature is uniform within each layer. (A more accurate reconstruction of temperature
may be added in the future.) Mass and internal energy are then transferred between layers, and
the new layer temperatures are derived from the ratio of internal energy to mass.
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6.4.1 Incremental remapping

Next we describe the incremental remapping scheme, which has several desirable features:

• It conserves the quantities being transported (mass and energy).

• It is non-oscillatory; that is, it does not create spurious ripples in the transported fields.

• It preserves tracer monotonicity. That is, it does not create new extrema in temperature;
the values at time m+ 1 are bounded by the values at time m.

• It is second-order accurate in space and therefore is less diffusive than first-order schemes.
The accuracy may be reduced locally to first order to preserve monotonicity.

• It is efficient for large numbers of tracers. Much of the work is geometrical and is performed
only once per cell edge instead of being repeated for each quantity being transported. (This
is more of an issue for CICE than for CISM, but for some applications it might be desirable
to carry additional tracers in CISM.)

The upwind scheme, like IR, is conservative, non-oscillatory, and monotonicity-preserving, but
because it is first-order it is highly diffusive.

The IR time step is limited by the requirement that trajectories projected backward from
grid cell corners are confined to the four surrounding cells; this is what is meant by incremental
remapping as opposed to general remapping. This requirement leads to a Courant–Friedrichs–
Lewy (CFL) condition,

max |u|∆t

∆x
≤ 1 (6.100)

For highly divergent velocity fields the maximum time step must be reduced by a factor of two
to ensure that trajectories do not cross. However, ice-sheet velocity fields usually have small
divergence per time step relative to the grid size.

The remapping algorithm can be summarized as follows:

1. Given mean values of the ice thickness and tracer fields in each grid cell, construct linear
approximations of these fields. Limit the field gradients to preserve monotonicity.

2. Given ice velocities at grid cell corners, identify departure regions for the fluxes across
each cell edge. Divide these departure regions into triangles and compute the coordinates
of the triangle vertices.

3. Integrate the area and tracer fields over the departure triangles to obtain the area, volume,
and energy transported across each cell edge.

4. Given these transports, update the state variables.

These steps are carried out for each of nz − 1 ice layers, as described below.

Reconstructing area and tracer fields

First, using the known values of the state variables, the ice thickness and tracer fields are
reconstructed in each grid cell as linear functions of x and y. For each field we compute the
value at the cell center, along with gradients in the x and y directions. The gradients are
limited to preserve monotonicity. When integrated over a grid cell, the reconstructed fields
must have mean values equal to the known state variables, denoted by h̄ for ice thickness and
T̃ for temperature.

Consider first the ice thickness in a given layer. We contruct a field h(r) whose mean is h̄,
where r = (x, y) is the position vector relative to the cell center. That is, we require
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∫
A

h dh = h̄ A, (6.101)

where A =
∫
A
dA is the grid cell area. Eq. (6.101) is satisfied if h(r) has the form

h(r) = h̄+ αh ⟨∇h⟩ · (r− r̄), (6.102)

where ⟨∇h⟩ is a centered estimate of the thickness gradient within the cell, αh is a limiting
coefficient that enforces monotonicity, and r̄ is the cell centroid in a local coordinate system
whose origin lies at the cell center:

r̄ =
1

A

∫
A

r dA.

On CISM’s structured rectangular grid the cell center and centroid coincide, so that r̄ = 0 and
h(r̄) = h̄.

Next consider the ice temperature field in a layer of thickness h. The reconstructed temper-
ature must satisfy ∫

A

hT dA = h̄ T̃ A, (6.103)

where T̃ = T (r̃) is the temperature at the center of ice mass. Eq. (6.103) is satisfied when T (r)
is given by

T (r) = T̃ + αT ⟨∇T ⟩ · (r− r̃), (6.104)

where ⟨∇T ⟩ is a centered estimate of the thickness gradient, αT is a limiting coefficient, and
the center of ice mass r̃ is given by

r̃ =
1

h̄ A

∫
A

h r dA. (6.105)

Evaluating the integrals, we find that the components of r̃ are

x̃ =
hcx+ hxx2 + hyxy

h̄
,

ỹ =
hcy + hxxy + hyy2

h̄
.

(6.106)

where hc = h is the thickness at the cell center, (hx, hy) is the limited thickness gradient, and the
terms with overbars are geometric means. On a rectangular mesh, only the terms proportional
to x2 and y2 are nonzero. From (6.104), the temperature at the cell center is given by

Tc = T̃ − Txx̃− Ty ỹ,

where (Tx, Ty) is the limited gradient of temperature.
We preserve monotonicity by limiting the gradients. If ϕ̄(i, j) denotes the mean value of

some field in grid cell (i, j), we first compute centered gradients of ϕ̄ in the x and y directions,
then check whether these gradients give values of ϕ within cell (i, j) that lie outside the range of
ϕ̄ in the cell and its eight neighbors. Let ϕ̄max and ϕ̄min be the maximum and minimum values
of ϕ̄ over the cell and its neighbors, and let ϕmax and ϕmin be the maximum and minimum
values of the reconstructed ϕ within the cell. Since the reconstruction is linear, ϕmax and ϕmin

are located at cell corners. If ϕmax > ϕ̄max or ϕmin < ϕ̄min, we multiply the unlimited gradient
by α = min(αmax, αmin), where
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αmax = (ϕ̄max − ϕ̄)/(ϕmax − ϕ̄),

αmin = (ϕ̄min − ϕ̄)/(ϕmin − ϕ̄).
(6.107)

Otherwise the gradient need not be limited.

Locating departure triangles

The method for locating departure triangles is discussed in detail by Dukowicz and Baumgard-
ner (2000). The basic idea is illustrated in Figure 6.1, which shows a shaded quadrilateral
departure region whose contents are transported to the target or home grid cell, labeled H.
The neighboring grid cells are labeled by compass directions: NW , N , NE, W , and E. The
four vectors point along the velocity field at the cell corners, and the departure region is formed
by joining the starting points of these vectors. Instead of integrating over the entire departure
region, it is convenient to compute fluxes across cell edges. We identify departure regions for the
north and east edges of each cell, which are also the south and west edges of neighboring cells.
Consider the north edge of the home cell, across which there are fluxes from the neighboring
NW and N cells. The contributing region from the NW cell is a triangle with vertices abc,
and that from the N cell is a quadrilateral that can be divided into two triangles with vertices
acd and ade. Focusing on triangle abc, we first determine the coordinates of vertices b and
c relative to the cell corner (vertex a), using Euclidean geometry to find vertex c. Then we
translate the three vertices to a coordinate system centered in the NW cell. This translation is
needed in order to integrate fields in the coordinate system where they have been reconstructed.
Repeating this process for the north and east edges of each grid cell, we compute the vertices
of all the departure triangles associated with each cell edge.

Figure 6.1: In incremental remapping, conserved quantities are remapped from the shaded
departure region, a quadrilateral formed by connecting the backward trajectories from the four
cell corners, to the grid cell labeled H. The region fluxed across the north edge of cell H consists
of a triangle (abc) in the NW cell and a quadrilateral (two triangles, acd and ade) in the N cell.

Figure 6.2, reproduced from Dukowicz and Baumgardner (2000), shows all possible triangles
that can contribute fluxes across the north edge of a grid cell. There are 20 triangles, which
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Figure 6.2: The 20 possible triangles that can contribute fluxes across the north edge of a grid
cell.

can be organized into five groups of four mutually exclusive triangles as shown in Table 6.1. In
this table, (x1, y1) and (x2, y2) are the Cartesian coordinates of the departure points relative
to the northwest and northeast cell corners, respectively. The departure points are joined by
a straight line that intersects the west edge at (0, ya) relative to the northwest corner and
intersects the east edge at (0, yb) relative to the northeast corner. The east cell triangles and
selecting conditions are identical except for a rotation through 90 degrees.

Departure triangles across a given cell edge are computed in a local coordinate system whose
origin lies at the midpoint of the edge and whose vertices are at (-0.5, 0) and (0.5, 0). Intersection
points are computed assuming Cartesian geometry with cell edges meeting at right angles. Let
CL and CR denote the left and right vertices, which are joined by line CLR. Similarly, let
DL and DR denote the departure points, which are joined by line DLR. Also, let IL and IR
denote the intersection points (0, ya) and (0,yb) respectively, and let IC = (xc, 0) denote the
intersection of CLR and DLR. It can be shown that ya, yb, and xc are given by

ya =
xCL(yDM − yDL) + xDMyDL − xDLyDM

xDM − xDL
,

yb =
xCR(yDR − yDM )− xDMyDR + xDRyDM

xDR − xDM
,

xc = (xDL − yDL)
(xDR − xDL)

(yDR − yDL)
.

(6.108)

Each departure triangle is defined by three of the seven points (CL, CR, DL, DR, IL, IR, IC).

In Dukowicz and Baumgardner (2000), departure points are defined by projecting cell corner
velocities directly backward. That is,

xD = −u∆t, (6.109)

where xD is the location of the departure point relative to the cell corner and u is the velocity
at the corner. This approximation is only first-order accurate. In CISM, accuracy is improved
by estimating the velocity at the midpoint of the trajectory.
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Triangle Triangle Selecting logical
group label condition

1 NW ya > 0 and y1 ≥ 0 and x1 < 0
NW1 ya < 0 and y1 ≥ 0 and x1 < 0
W ya < 0 and y1 < 0 and x1 < 0
W2 ya > 0 and y1 < 0 and x1 < 0

2 NE yb > 0 and y2 ≥ 0 and x2 > 0
NE1 yb < 0 and y2 ≥ 0 and x2 > 0
E yb < 0 and y2 < 0 and x2 > 0
E2 yb > 0 and y2 < 0 and x2 > 0

3 W1 ya < 0 and y1 ≥ 0 and x1 < 0
NW2 ya > 0 and y1 < 0 and x1 < 0
E1 yb < 0 and y2 ≥ 0 and x2 > 0
NE2 yb > 0 and y2 < 0 and x2 > 0

4 H1a yayb ≥ 0 and ya + yb < 0
N1a yayb ≥ 0 and ya + yb > 0
H1b yayb < 0 and ỹ1 < 0
N1b yayb < 0 and ỹ1 > 0

5 H2a yayb ≥ 0 and ya + yb < 0
N2a yayb ≥ 0 and ya + yb > 0
H2b yayb < 0 and ỹ2 < 0
N2b yayb < 0 and ỹ2 > 0

Table 6.1: Evaluation of contributions from the 20 triangles across the north cell edge. The
coordinates x1, x2, y1, y2, ya, and yb are defined in the text. We define ỹ1 = y1 if x1 > 0, else
ỹ1 = ya. Similarly, ỹ2 = y2 if x2 < 0, else ỹ2 = yb.



6.4. MASS AND TRACER TRANSPORT 95

Integrating fields

Next, we integrate the reconstructed fields over the departure triangles to find the total volume
and internal energy transported across each cell edge. Volume transports are easy to compute
since the ice thickness is linear in x and y. Given a triangle with vertices xi = (xi, yi), i ∈
{1, 2, 3}, the triangle area is

AT =
1

2
|(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)| . (6.110)

The integral Fa of any linear function f(r) over a triangle is given by

Fa = AT f(x0), (6.111)

where x0 = (x0, y0) is the triangle midpoint,

x0 =
1

3

3∑
i=1

xi. (6.112)

Thus, to compute the volume transport, we evaluate the thickness at the midpoint,

h(x0) = hc + hxx0 + hyy0, (6.113)

and multiply by AT . By convention, northward and eastward transport is positive, while south-
ward and westward transport is negative.

Eq. (6.111) cannot be used for energy transport, because the reconstructed internal energy
is a quadratic function of position. (It is the product of two linear functions, for thickness
and temperature.) The integral of a quadratic polynomial over a triangle requires function
evaluations at three points,

Fh =
AT

3

3∑
i=1

f (x′
i) , (6.114)

where x′
i = (x0 + xi)/2 are points lying halfway between the midpoint and the three vertices.

Updating state variables

Finally, we compute new values of the state variables in each ice layer of each grid cell. The
new ice thickness h′(i, j) is given by

h′(i, j) = h(i, j) +
FE(i− 1, j)− FE(i, j) + FN (i, j − 1)− FN (i, j)

A(i, j)
(6.115)

where FE(i, j) and FN (i, j) are the volume transports across the east and north edges, re-
spectively, of cell (i, j), and A(i, j) is the grid cell area. All transports added to one cell are
subtracted from a neighboring cell; thus (6.115) conserves total ice volume.

The new internal energy in each layer is computed analogously. New temperatures are then
given by the ratio of energy to volume. (Other tracers, if present, are updated in the same way.)
Tracer monotonicity is ensured because

T ′ =

∫
A
hT dA∫

A
h dA

,

where T ′ is the new-time temperature, given by integrating the old-time thickness and temper-
ature over a Lagrangian departure region with area A. That is, the new-time temperature is a
weighted averages over old-time values, with non-negative weights h. Thus the new-time values
must lie between the maximum and minimum of the old-time values.
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6.4.2 CFL checks

As mentioned above, the time step used for explicit advection is limited by the advective CFL
condition (6.100). Furthermore, for ice flux parallel to ∇s, ice thickness evolution is diffusive,
giving rise to an additional diffusive CFL condition (Bueler and Brown, 2009):

maxD∆t

∆x
1
2

≤ 2 (6.116)

Flow governed by the shallow-ice approximation is always subject to this diffusive CFL, but
some component of higher-order flow may not be because the ice velocity may not be parallel
to ∇s (Bueler and Brown, 2009).

For these reasons, Glissade’s transport scheme checks both the advective and diffusive CFL
conditions and writes a warning to the log file if either is violated. These warnings indicate the
i, j indices (on the global domain) of the point where the worst violation occurred, as well as
the maximum allowable time step given the CFL condition(s).

The diffusivity is approximated using the component of velocity in the downslope direction:

D =
(u · ∇s)H

|∇s|
(6.117)

Future work may identify a less restrictive diffusivity, so the diffusive CFL warnings currently
written may be overly restrictive. In other words, it is possible for a stable simulation to generate
a diffusive CFL warning.

Advective CFL violations generally lead to stability problems with thickness evolution. How-
ever, since CFL violations may occur in portions of the domain that are not of interest to the
user, these violations are not set to be a fatal error. Note, however, that the IR scheme may
generate a “departure points out of bounds” error when advective CFL violations occur. This
is a failure in the method that does result in a fatal error.

Eventually, CISM may include an adaptive time-stepping scheme that adjusts the time step
based on the advective and diffusive CFL conditions. At present, however, the time step must be
set manually and remain constant over a simulation. To aid in determining an appropriate time
step, the adv cfl dt and diff cfl dt variables can be added to an output file. These variables
are the maximum allowable time steps at each time in the model based on the advective and
diffusive CFL conditions, respectively. In some cases, stability might require taking half of the
reported values.

6.5 Other model physics

The Glissade modules for velocity, temperature, and transport replace the corresponding Glide
modules when dycore = 2 is set in the config file. Other model physics, however, remains
similar to Glide. In particular:

• Isostasy is treated in the same way as in Glide (see Section 4.4). The lithosphere can be
treated as local or elastic, and the asthenosphere is either fluid or relaxing. Note that the
elastic lithosphere calculation is non-local and has not been parallelized. Thus it is not
possible to simulate an elastic lithosphere when running on more than one processor.

• Typically, the geothermal heat flux is set to a constant or prescribed from an input file. As
in Glide, however, it is also possible to compute the geothermal heat flux from a model of
heat flow in bedrock (see Section 4.3.2). This model includes non-local horizontal diffusion
which, like the elastic lithosphere, has not been parallelized and therefore will not work
on multiple processors.
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• The calving options in Glissade are the same as those in Glide and are specified by the
config variable marine margin. These options are very simple (e.g., remove floating ice
whenever the bedrock elevation is lower than a prescribed value). Since all the current
options are local, they should work in parallel.

• The basal water options in Glissade are also the same as those in Glide. These are all local
except for basal water = 2, which computes a flux of basal water based on a steady-state
routing calculation. The routing calculation is not parallel and has not been tested with
Glissade.

A sophisticated basal hydrology model is under development and will likely be included in
future versions of CISM. This model will output the effective pressure, which is a required input
for the Coulomb friction law (which ho babc = 10) recently introduced in CISM. For now the
effective pressure is either read from an input file or parameterized simply (using basal water

= 4). The Coulomb friction law is not yet scientifically supported and should be used at your
own risk.

In summary, although CISM has a sophisticated higher-order dycore, the physics parame-
terizations remain fairly simple, especially for runs with multiple processors. This is an area of
active development.
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Chapter 7

Running CISM

7.1 Overview of Running CISM

Assuming you successfully completed the Installation instructions in Chapter 2, the executable
for running the model, cism driver, can be found in your build directory in a subdirectory
called cism driver (e.g., ./builds/mac-gnu/cism driver/cism driver).

The build system creates the executable at this path but does not automatically make it
available to other locations on your system. How you choose to do so depends on your situation.
See the introduction to Chapter 8 for an overview of how to make the executable available to
other locations on your system (e.g., symlinking, copying, or modifying your PATH environment
variable).

Unlike previous versions of Glimmer, CISM 2.0 has a single executable, cism driver, for
running the model in all configurations. cism driver can be invoked with a single argument
specifying a CISM .config file to run CISM as a standalone ice sheet model without Glint climate
forcing, or with two arguments (a CISM config file and a Glint config file) to run CISM with
Glint climate forcing:

Call cism_driver with either 1 or 2 arguments. Examples:

cism_driver ice_sheet.config

cism_driver ice_sheet.config climate.config

The available options for the CISM configuration file and for the Glint climate interface config-
uration file are described in detail below.

To perform a parallel run with the parallel build of CISM, you must use the MPI run
command, which is typically mpirun or mpiexec but may vary among MPI versions and instal-
lations. A standard syntax that is likely to work on most installations is

mpirun -np N cism driver ice sheet.config climate.config

where N is the number of processors you want to use, ice sheet.config is the name of the
CISM configuration file, and the optional argument climate.config is the name of the climate
configuration file. For example:

mpirun -np 4 cism driver dome.config

would run the dome test case on four processors.
When CISM runs, some basic information about its operation will be output to the screen

(standard out). More verbose information about the run will be written to a log file which is
named ice sheet.config.log, where ice sheet.config is the name of the .config file used
to perform the run. (For example, if running the model with ./cism driver dome.config,
the log file will be called dome.config.log.) The log file is an important reference, especially
for debugging runs that do not behave as expected. For example, this file includes a list of
configuration options and parameter values, which can be useful in diagnosing problems like

99
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typos in your .config file. The log file also indicates what files were used for input and output and
at which times I/O occurred. The log file may contain warnings about potentially problematic
configuration combinations or model behavior, such as the use of configurations settings that
are not scientifically validated, or a CFL violation during advection. In contrast, fatal errors
will kill the model and the error message will be written to both the screen and the log file.

Optionally, the log file also contains diagnostic information about the global state of the ice
sheet (e.g., the total ice area and volume, the maximum surface and basal speeds, and the max
and min temperatures), along with vertical profiles of speed and temperature at a user-specified
grid point. This information is written at intervals specified by the config file variable dt diag,
for the diagnostic point (idiag,jdiag).

In addition to the log file, the model will create any netCDF output files requested in the
config file (see Section 7.4 below for details). If the model dies for some reason midway through
a simulation, the netCDF files will still include output for the part of the simulation that was
completed.

CISM2 (like its predecessor, Glimmer-CISM) has been coupled to the Community Earth
System Model1 and will be included in future CESM releases. Lipscomb et al. (2013) described
the initial implementation of CISM in CESM, with one-way forcing of the Greenland ice sheet
(using the shallow-ice approximation) by the surface mass balance computed in CESM’s land
model. Interactive coupling between ice sheets and other climate components has recently been
implemented and is now being tested. This document, however, does not provide instructions
for running CISM within CESM or other climate models. Please see here2 for guidance on
running CISM in CESM.

7.2 Overview of Configuration Files

Running CISM is managed through configuration files (*.config) that enable desired model
features and control input of initial conditions and forcing and output of model results. This
chapter summarizes the configuration options available for running CISM and is divided into
sections on general Model Configuration, Input/Ouput Configuration, and optional Climate
Forcing Configuration.

The format of CISM configuration files is taken from that used by the ConfigParser module
in Python 2.x, which is similar to Windows .ini files and contains sections. Each section
contains key/value pairs.

Comments: Empty lines, or lines starting with a #, ; or ! are ignored. Comments can also be added
on the same line as a key/value pair using these delimiters.

Sections: A new section starts with the section name enclosed by square brackets, [ ] and can be
up to 50 characters long, e.g., [grid].

Key/Value Pairs: Keys are separated from their associated values by = or :. The names can be up to 50
characters long. Values can be up to 400 characters long.

Sections and keys are case-sensitive and may contain white space. However, the configuration
parser is very simple and thus the number of spaces within a key or section name also matters.
Sensible defaults are used when a specific key is not found; defaults are shown in bold in the
tables below.

Here is an example configuration file:

;a comment

[a section]

1www2.cesm.ucar.edu
2www.cesm.ucar.edu/models/cesm1.2/cism

https://www2.cesm.ucar.edu/
https://www2.cesm.ucar.edu/
http://www.cesm.ucar.edu/models/cesm1.2/cism/
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an_int : 1

a_float = 2.0

a_char = hey, this is rather cool

an_array = 10. 20. -10. 40. 100.

[another section]

! more comments

foo : bar

7.3 Model Configuration

General model configuration options specify the grid and time-stepping used by the model, the
dynamical core (dycore) used, and control various optional physics packages and parameter
values. The [grid] and [time] configuration sections are always required. Also, while not
required, in almost all situations [options] and (if using a higher-order dycore) [ho options]

will be included in .config files. The [parameters] and [sigma] sections are also commonly
used. The [GTHF], [isostasy], and [projection] sections are needed only if the associated
features are desired. Details of each of these sections, what they control, and the available
options for each section are listed in the tables below.

[grid]

Define model grid.
ewn (integer) number of nodes in x–direction
nsn (integer) number of nodes in y–direction
upn (integer) number of nodes in z–direction
dew (real) node spacing in x–direction (m)
dns (real) node spacing in y–direction (m)
global bc boundary conditions for the edges of the global domain

0 periodic
1 outflow

sigma method for specifying sigma coordinates:
0 Use Glimmer’s default spacing

σi =
1−(xi+1)−n

1−2−n with xi =
σi−1
σn−1 , n = 2.

1 use sigma coordinates defined in external file (named sigma file)
2 use sigma coordinates given in configuration file
3 use evenly spaced sigma levels (required by the Glam dycore)
4 use Pattyn sigma levels

[sigma]

Define the sigma levels used in the vertical discretization (sigma=2 above). This is an
alternative to using a separate file (specified in section [grid] above). If neither is used,
the levels are calculated as described above.
sigma levels (real) list of sigma levels, in ascending order, separated by spaces.

These run between 0.0 and 1.0.

[time]

Configure time steps and diagnostic specifications
tstart (real) start time of the model in years
tend (real) end time of the model in years

continued on next page
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dt (real) size of time step in years
subcyc (integer) number of time steps to subcycle evolution within dt

using a steady velocity field
ntem (real) time step multiplier setting the ice temperature update in-

terval
dt diag (real) writing diagnostic variables to log file every dt diag yrs
idiag (int) x direction index for diagnostic grid point in log file
jdiag (int) y direction index for diagnostic grid point in log file

[options]

Parameters set in this section determine how various components of the ice sheet model
are treated. Configuration number options with a † are specific to the higher-order dycores
(e.g., Glissade). Options with a ? are working, but are currently not scientifically sup-
ported, and are therefore for use at your own risk. Options with a ! are in development
and will be supported in future code releases.
dycore 0 Glide (1-processor, 3d, shallow-ice-approximation dy-

core)
1†? Glam (parallel, 3d, FDM, 1st-order-accurate dycore)
2† Glissade (parallel, 3d, FEM, 1st-order-accurate dycore)
3†! FELIX (parallel, 3d, FEM, 1st-order-accurate dycore)
4†! BISICLES (parallel, quasi-3d, FVM, L1L2 dycore)

evolution (ice thickness) 0 pseudo-diffusion (Glide only)
1 ADI scheme (Glide only)
2 diffusion (Glide only)
3† incremental remapping
4† first-order upwind
5† evolve without changing ice thickness (Useful for run-

ning with a fixed geometry, e.g. for a temperature
spinup. On each time step, geometry and tracers are
evolved using incremental remapping, after which geom-
etry is reset to its initial value. This evolution scheme
is still subject to the advective CFL condition.)

temperature 0 Set each ice column to local surface air temperature
1 prognostic temperature calculation
2 hold temperature steady at initial value
3! prognostic temperature calculation using enthalpy-

based formulation
temp init 0 initial temperatures isothermal at 0◦C

1 initial column temperatures set to atmos. temperature
2 initial column temperatures linearly interpolated be-

tween atmos. temperature and pressure melting point
flow law 0 constant (using the value of default flwa)

1 temperature-dependent, Paterson and Budd (1982)
(T = −5◦C)

2 temperature-dependent, Paterson and Budd (1982)
(function of variable T)

continued on next page
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basal water 0 none
1 local water balance
2? compute the steady-state, routing-based, basal water

flux and water layer thickness (NOTE: not supported
for > 1 processor)

3 use a constant basal water layer thickness everywhere,
to enforce T=Tpmp everywhere

4! ocean penetration parameterization for effective pres-
sure from Leguy et al. (2014)

basal mass balance 0 ignore basal melt rate in mass balance calculation
1 include basal melt rate in mass balance calculation

slip coeff slip coefficient (Glissade local SIA and Glide only)
0 zero (no sliding)
1 set to a non–zero constant everywhere
2 set to constant where basal water (bwat) is nonzero
3 set to constant where the ice base is melting
4 set proportional to basal melt rate
5 tanh function of basal water (bwat)

marine margin 0 ignore marine margin
1 set thickness to zero if floating
2 lose fraction of ice from edge cells
3 set thickness to zero if relaxed bedrock is below a given

depth (variable “mlimit” in glide types)
4 set thickness to zero if present-day bedrock is below a

given depth (variable “mlimit” in glide types)
5? Huybrechts calving scheme

vertical integration (Glide only)
0 standard integration (to obtain vertical velocity profile)
1 constrained to obey kinematic velocity at upper surface

boundary
gthf 0 prescribed, uniform geothermal heat flux

1 read 2d geothermal heat flux field from input file
2 calculate geothermal heat flux using 3d diffusion model

isostasy 0 no isostatic adjustment
1 compute isostatic adjustment using lithosphere / as-

thenosphere model (see below for available options)
topo is relaxed 0 relaxed topography is read from a separate input vari-

able, relx
1 first time slice of input topography is assumed to be

relaxed
2 first time slice of input topography is assumed to be in

isostatic equilibrium with ice thickness
continued on next page
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restart Note: alternate keyword hotstart is retained for backwards com-
patibility.
0 normal start (initial values taken from input file or, if

absent, using default options)
1 restart model using input from previous run; specific

fields required for restart are dependent on chosen op-
tions (add “restart” to the variable list in the [CF

output] section of the .config file to automatically
save the appropriate restart fields.)

ioparams (string) name of file containing netCDF I/O configuration. The
main configuration file is searched for I/O related sections if no
file name is given (default). In other words, you can remove sec-
tions CF input, CF output, and CF forcing from the primary
configuration file and place them in a separate file, the path to
which is specified here.

[ho options]

Options set in this section determine how various components of the higher-order extensions
to the ice sheet model (e.g., Glissade) are treated. Defaults are indicated in bold. These
options have no effect on the shallow-ice (Glide) dycore. In this section, options with a ?
are working but are currently not scientifically supported (and are therefore for use at your
own risk). Options marked with a * apply only to a serial build (or a parallel build if run
on 1 processor). Options marked with a ! are under development and will be supported in
future versions of the code (hence, these are also for use at your own risk).
which ho nonlinear 0 treat nonlinearity in momentum balance using Picard

iteration
1? treat nonlinearity in momentum balance using Jacobian-

Free Newton-Krylov iteration (Glam only)
which ho sparse -1* solve sparse linear system using SLAP with incomplete

Cholesky preconditioned conjugate gradient method
0* solve sparse linear system using SLAP with incomplete

LU-preconditioned biconjugate gradient method
1* solve sparse linear system using SLAP with incomplete

LU-preconditioned GMRES method
2 solve sparse linear system using preconditioned conju-

gate gradient method: standard algorithm (Glissade
only)

3 solve sparse linear system using preconditioned conju-
gate gradient method: Chronopoulos-Gear algorithm
(Glissade only)

4 solve sparse linear system using Trilinos, incom-
plete LU-preconditioned GMRES method (Trilinos-
compatible build only)

continued on next page
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which ho efvs 0 use a constant value for the effective viscosity (i.e., linear
viscosity). The default value is 2336041 Pa yr (as used
by ISMIP-HOM Test F).

1 set the effective viscosity to a value based on the flow
rate factor: efvs = 0.5 ∗A−1/n

2 use the effective strain rate to compute the effective vis-
cosity (i.e., full nonlinear treatment)

which ho disp -1 no dissipation term included in temperature equation
0 calculate dissipation in temperature equation assuming

SIA ice dynamics
1 calculate dissipation in temperature equation assuming

first-order ice dynamics
which ho babc Implementation of basal boundary condition in higher-order dy-

core
0 constant value of “beta”
1 specify a simple pattern for “beta” (hardcoded, mainly

useful for debugging)
2 read map of yield stress (in Pa) from input field

“mintauf” to simulate sliding over a plastic subglacial
till (Picard-based solution)

3 calculate “beta” as linear (inverse) function of basal wa-
ter thickness

4 (virtually) no slip everywhere in domain (“beta” set to
very large value)

5 read map of “beta” from .nc input file using standard
I/O

6 no slip everywhere in domain (using Dirichlet basal BC)
7! read map of yield stress (in Pa) from input field

“mintauf” to simulate sliding over a plastic subglacial
till (Newton-based solution)

8* Spatial field of “beta” required for ISMIP-HOM Test
C (avoids interpolation error associated with option 5;
works for a single processor only)

9! Weertman-style power-law accounting for effective pres-
sure (Eq. 5.33)

10! Coulomb friction law (Eq. 5.34)
continued on next page
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which ho resid Residual calculation method for higher-order velocity solvers (e.g.,
Glissade). Nonlinear iterations are halted once the residual falls
below a specified value.
0? use the maximum value of the normalized velocity vector

update, defined by r = |velk−1−velk|
velk

1? as in option 0 but omitting the basal velocities from the
comparison (useful in cases where an approx. no slip
basal BC is enforced)

2? as in option 0 but using the mean rather than the max
3 use the L2 norm of the system residual, defined by r =

Ax− b
4 use L2 norm of residual relative to rhs, |Ax− b|/|b|

which ho approx Stokes-flow approximation to use with Glissade dycore
-1 local shallow-ice approximation, Glide-type calculation

(uses glissade velo sia)
0 3d matrix shallow-ice approximation, vertical-shear

stresses only (uses glissade velo higher)
1 shallow-shelf approximation (SSA) with horizontal-

plane stresses only (uses glissade velo higher; requires
which ho precond <=1)

2 Blatter-Pattyn with both vertical-shear and horizontal-
plane stresses (uses glissade velo higher)

3 depth-integrated (L1L2) approximation, with both ver-
tical shear and horizontal-plane stresses (uses glis-
sade velo higher; requires which ho precond <=1)

which ho precond Preconditioner to use in the linear PCG solve of the Glissade
dycore
0 no preconditioner
1 diagonal preconditioner
2 physics-based (shallow-ice) preconditioner (not valid for

SSA and L1L2)
which ho gradient Which spatial gradient operator to use in the Glissade dycore

0 centered gradient
1 upstream gradient (damps checkerboard noise in prog-

nostic simulations)
which ho gradient margin Spatial gradient operator to use in the Glissade dycore at ice sheet

margins.
0 use information from all neighboring cells, ice-covered

or ice-free
1 use information from ice-covered and/or land cells, but

not ice-free ocean cells
2 use information from ice-covered cells only

continued on next page
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which ho assemble beta Finite-element assembly method for basal boundary conditions
that use “beta” field
0 Standard finite-element calculation, which effectively

applies a smoothing to “beta” (and “mintauf”)
1 Apply the local “beta” (or “mintauf”) value at each ver-

tex (no smoothing)
glissade maxiter 100 Maximum number of nonlinear (Picard) iterations in the

Glissade dycore

[parameters]

Set values for various parameters. Parameters with a † are specific to the higher-order
dycores (e.g., Glissade).
log level (integer) set to a value between 0, no messages, and 6, all mes-

sages are displayed to stdout. By default, messages are only
logged to a file. The format for this filename is “configuration-
file-name.config.log”

ice limit (real) below this limit ice is only accumulated/ablated; ice dy-
namics are switched on once the ice thickness is above this value.
(default = 100.0 m)

ice limit temp † (real) minimum thickness for computing vertical temperature (m).
(default = 1.0 m)

marine limit (real) all ice is assumed lost (calved) once water depths reach this
value (for marine margin=3 or 4 in [options] above). Note,
water depth is negative. (default = -200.0 m)

calving fraction (real) fraction of ice lost due to calving (for marine margin=2).
(default = 0.8)

geothermal (real) constant geothermal heat flux, positive down by convention
(hence < 0). (default = -0.05 W m−2)

flow factor (real) the flow law rate factor is multiplied by this factor (default
= 1.0; in previous versions of Glimmer-CISM the default value
was 3.0)

default flwa flow law parameter A to use in isothermal experiments (flow law
set to 0). Default value is 10−16 Pa−n yr−1. This overrides any
temperature dependence.

efvs constant † Constant value of effective viscosity when using
which ho efvs=0. Default value is 2336041 Pa yr, as in
ISMIP-HOM Test F.

basal tract const constant basal traction parameter. You can load a .nc file with a
variable called soft if you want a spatially varying bed softness
parameter (Glissade local SIA and Glide only)

basal tract max max value for basal traction when using slip coeff=4.
basal tract slope slope value for basal traction relation when using slip coeff=4.

(Relation also uses basal tract const.)
basal tract tanh (real(5)) basal traction factors. Basal traction

is set to B = tanh(W ) with the parameters
(1) width of the tanh curve
(2) W at midpoint of tanh curve [m]
(3) B minimum [ma−1Pa−1]
(4) B maximum [ma−1Pa−1]
(5) multiplier for marine sediments

continued on next page
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ho beta const † (real) spatially uniform beta used when which ho babc = 0. (de-
fault = 10.0 Pa yr m−1)

friction powerlaw k † (real) friction coefficient k used for which ho babc = 9 (Eq. 5.33)
(default = 8.4e-9 m y−1 Pa−2, from Bindschadler (1983) converted
to CISM units)

coulomb c † (real) Coulomb friction coefficient (unitless), C, used for
which ho babc = 10 (Eq. 5.34) (default = 0.42, from Pimentel
et al. (2010))

coulomb bump wavelength † (real) wavelength (m) of the dominant bedrock bumps, λmax, used
for which ho babc = 10 (Eq. 5.34) (default = 2.0 m, from Pi-
mentel et al. (2010))

coulomb bump slope † (real) maximum slope (unitless) of the dominant bedrock bumps,
mmax, used for which ho babc = 10 (Eq. 5.34) (default = 0.5 m,
from Pimentel et al. (2010))

p ocean penetration (real) p-exponent in ocean penetration parameterization for
(basal water = 4 (default = 0.0)

periodic offset ew† (real) vertical offset between east and west edges of the global
domain. (default = 0.0 m) (Primarily used for ISMIP-HOM and
Stream test cases.)

periodic offset ns† (real) vertical offset between north and south edges of the global
domain. (default = 0.0 m) (Primarily used for ISMIP-HOM and
Stream test cases.)

[GTHF]

Options related to lithospheric temperature and geothermal heat calculation. Ignored
unless gthf = 1.
num dim can be either 1 for 1D calculations or 3 for 3D calculations.
nlayer number of vertical layers (default: 20).
surft initial surface temperature (default 2◦C).
rock base depth below sea-level at which geothermal heat gradient is applied

(default: -5000m).
numt number time steps for spinning up GTHF calculations (default:

0).
rho The density of lithosphere (default: 3300kg m−3).
shc specific heat capcity of lithosphere (default: 1000J kg−1 K−1).
con thermal conductivity of lithosphere (3.3 W m−1 K−1).

[isostasy]

Options related to isostasy model. Ignored unless isostasy = 1. Options marked with a
* work only with a serial build (or a parallel build if run on 1 processor).
lithosphere 0 local lithosphere, equilibrium bedrock depression is found

using Archimedes’ principle
1* elastic lithosphere, flexural rigidity is taken into account

asthenosphere 0 fluid mantle, isostatic adjustment happens instantaneously
1 relaxing mantle, mantle is approximated by a half-space

relaxed tau characteristic time constant of relaxing mantle (default: 4000.a)
update lithosphere update period (default: 500.a)
flexural rigidity flexural rigidity of the lithosphere (default: 0.24e25 Pa m3)

continued on next page
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[projection]

Specify map projection for reference. The reader is referred to Snyder J.P. (1987) Map
Projections - a working manual. USGS Professional Paper 1395.
type string that specifies the projection type (LAEA, AEA, LCC or STERE).
centre longitude central longitude in degrees east
centre latitude central latitude in degrees north
false easting false easting in meters
false northing false northing in meters
standard parallel location of standard parallel(s) in degrees north. Up to two stan-

dard parallels may be specified (depending on the projection).
scale factor non-dimensional; relevant only for the stereographic projection

7.4 Input/Output Configuration

NetCDF I/O can be configured in the main configuration file or in a separate file (see ioparams
in the [options] section description above). Any number of input, forcing, and output files
can be specified.

Input files are processed in the same order they appear in the configuration file, thus poten-
tially overwriting previously loaded fields. The configuration section for an input file specifies
which time slice from the input file should be used as the initial condition. (This is an integer
specifying the time level, not the actual time.)

Input files can contain any of a large number of model fields that are specified as being
“loadable”. These fields are marked with asterisks in the netCDF model variable table in
Appendix A. The option for a given variable to be “loadable” or not can be changed within
the * vars.def files (most commonly, glide vars.def), as described in Appendix B.1. The
standard test cases discussed in Chapter 8 give examples of variables that might be specified
for standard model setups.

Forcing files are new in CISM 2.0. These are input files that are read on every time step to
allow time-dependent forcing to be applied during a simulation. Any input fields specified in
* vars.def (again, most commonly, glide vars.def) can be included in forcing files. Forcing
files should have a “time” field which is used to assign values to each field in the file during the
simulation. Forcing is applied in a piecewise constant fashion; the most recent time slice in the
forcing file prior to the current model time is used on each time step. (Linear interpolatation
of forcing may be available in the future but is not yet implemented.) If a field is present
in both an input file and a forcing file at the start time, the value in the forcing file will
overwrite the value from the input file because forcing files are read after input files. Forcing
files are processed in the same order they appear in the configuration file on each time step, thus
potentially overwriting previously loaded fields from other forcing files. The “dome” test case
(tests/higher-order/dome) includes an optional setup of how to implement time-dependent
forcing.

One special input field is the kinbcmask field, which is used to specify locations (i.e., indices
in the horizontal grid plane) on the staggered (velocity) grid where Dirichlet boundary conditions
are to be applied. This input field is used in conjunction with the uvel and vvel fields. At
any location where kinbcmask = 1, the input field values of uvel and vvel for that same
column will be applied as Dirichlet boundary conditions on the velocity solution. If uvel and
vvel are not included in the input file, zero velocity will be specified throughout the column
for any location where kinbcmask is set to 1. An example of this application can be seen in
the confined shelf test case described in Chapter 8.2. The construction of the relevant input
kinbcmask field is done by the python script that constructs the other input fields for this
test case (the shelf-confined.py script). Also, the dome test case described in Chapter 8.2
includes a script and a config file demonstrating how kinbcmask, uvel, and vvel can be used
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in a forcing file to provide time-varying Dirichlet boundary conditions.
The following tables describe netCDF sections and parameters in the .config file.

[CF default]

This section contains metadata describing the experiment. Any of these parameters can
be optionally included in the [CF output] section for a specific output file, overriding the
default values specified here.
title Title of the experiment
institution Institution at which the experiment was run
references References that might be useful
comment Comments further describing the experiment

[CF input]

Any number of input files can be specified in separate [CF input] sections. They are pro-
cessed in the order they appear in the configuration file, potentially overwriting previously
loaded variables with the same names from previous input files.
name Name of the netCDF file to be read. Typically, netCDF files end with

.nc.
time Time slice (not actual time) to be read from the netCDF file. The first

time slice is read by default.

[CF forcing]

Any number of forcing files can be specified in separate [CF forcing] sections. They
are processed in the order they appear in the configuration file, potentially overwriting
previously loaded variables. Each forcing file needs a “time” dimension and variable that
indicates the model time associated with each time slice in the file.
name Name of the netCDF file to be read. Typically, netCDF files end with

.nc.

[CF output]

This section controls how often selected variables are written to files.
name Name of the output netCDF file. Typically, netCDF files end with .nc.
start (real) Start writing to file when this time (years) is reached (default:

first time slice).
stop (real) Stop writing to file when this time (years) is reached (default: last

time slice).
frequency (real) The time interval in years, determining how often selected vari-

ables are written to file.
xtype Set the floating point representation used in netCDF file. xtype can be

one of real, double (default: real). (If the name restart is included
in the list of variables, xtype is automatically set to double to ensure
bit-reproducible restarts, overriding the value set here.)

variables List of variables to be written to file. See Appendix A for a list of
possible variables. Names should be separated by at least one space. The
variable names are case-sensitive. The name restart selects all variables
necessary for a restart based on the specified model configuration. (The
name hot is also retained for this purpose for backwards compatability.)
If the name restart is included, the xtype option is automatically set
to double to ensure bit-reproducible restarts.

continued on next page
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7.5 Climate Forcing Configuration

The core ice sheet model is connected to the climate via the surface mass balance (acab field)
and air temperature (artm field) and (optionally) a scalar value for eustatic sea level. This
climate forcing can come from:

• climate schemes included in the CISM code:

– EISMINT 1 and 2

– annual and daily PDD schemes

• data input into the model:

– directly as user-supplied acab and artm fields

– from a global or regional climate model (e.g., CESM, GENIE, either from data or
coupled) throught the Glint interface

7.5.1 EISMINT climate forcing

Like previous versions of Glimmer, CISM includes a set of idealized climate forcings used in the
European Ice Sheet Modeling INiTiative (EISMINT) Phase 1 and 2 series of experiments. These
forcings consist of surface mass balance and air temperature fields for predefined experiments.
See Chapter 8 for details of how to run the individual tests, and see the EISMINT publications
for a more detailed description of the tests and the forcings associated with each. Huybrechts
et al. (1996) describe EISMINT Phase 1, and Payne et al. (2000) describe EISMINT Phase 2.

Configuration

The various EISMINT climate forcings are enabled by adding one of the following sections to
the configuration file used for running CISM. See the files associated with the EISMINT test
cases (Chapter 8) for examples of their use for each of the specific experiment setups described
in Huybrechts et al. (1996) and Payne et al. (2000).

[EISMINT-1 fixed margin]

EISMINT 1 fixed margin scenario. Some of the EISMINT-1 fixed margin tests use periodic,
time-varying forcing.
temperature (real(2 values)) Temperature forcing

Tsurface = t1 + t2d

where
d = max{|x− xsummit|, |y − ysummit|}

continued on next page
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massbalance (real) Mass balance forcing
period (real) Period of time–dependent forcing (switched off when set to 0)

∆T = 10 sin
2πt

T

and

∆M = 0.2sin
2πt

T

mb amplitude (real) Amplitude of the surface mass balance when period > 0

[EISMINT-1 moving margin]

EISMINT 1 moving margin scenario. Some of the EISMINT-1 moving margin tests use
periodic, time-varying forcing.

temperature (real(2 values)) Temperature forcing

Tsurface = t1 − t2H

where H is the ice thickness
massbalance (real(3 values)) Mass balance forcing

M = min{m1,m2(m3 − d)}

where

d =
√
(x− xsummit)

2 + (y − ysummit)
2

period (real) Period of time–dependent forcing (switched off when set to 0)

∆T = 10 sin
2πt

T

and

M = min

{
m1,m2

(
m3 + 100sin

2πt

T
− d

)}
mb amplitude (real) Amplitude of the surface mass balance when period > 0

[EISMINT-2]

EISMINT 2 climate forcing. Both surface mass balance and air temperature depend solely
on position in the map plane and not on ice-surface elevation.
temperature (real(2 values)) Temperature forcing

Tsurface = t1 − t2d

where d is the distance from the summit,

d =
√
(x− xsummit)

2 + (y − ysummit)
2

continued on next page
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massbalance (real(3 values)) Mass balance forcing

M = min{m1,m2(m3 − d)}

where d is the distance from the summit,

d =
√
(x− xsummit)

2 + (y − ysummit)
2

7.5.2 Glint driver

Glint (originally an acronym for “Glimmer interface”) allows CISM to be run with forcing from
an external climate model or global data sets. Glint was originally developed as an interface
between Glide and the GENIE Earth-system model, but is designed to be flexible enough to
be used with a wide range of global climate models. In older versions of Glint, it was assumed
that forcing from the climate model would include the temperature and precipitation fields
required to force a positive-degree-day (PDD) scheme for the surface mass balance (SMB). In
CISM2, PDD forcing is still supported, but Glint can also receive the SMB (typically computed
in multiple elevation classes on the relatively coarse grid of a climate model) and downscale it
directly to the ice sheet model grid.

A distinctive feature of Glint is the way it uses the object-oriented Glide architecture to
enable multiple ice models to be coupled to the same climate model. This means that regional
ice models can potentially run at high resolution over several parts of the globe (e.g., Greenland
and Antarctica), without the expense of running a global ice sheet model.

Glint automates the processes required in coupling regional models to a global model, par-
ticularly the downscaling and upscaling of the fields that form the interface between the two
models. The user may specify map projection parameters for each of the ice sheet models
(known as instances). The different time steps of the global model, mass-balance scheme, and
ice sheet model are handled automatically by temporal averaging or accumulation of quantities
as appropriate.

Prerequisites

Glint users should bear the following in mind:

• Global input fields must be supplied on a latitude-longitude grid. The grid does not have
to be uniform in latitude, meaning that Gaussian grids may be used. Irregular grids (e.g.,
icosahedral grids) are not currently supported. The boundaries of the grid boxes may be
specified; if not, they are assumed to lie halfway between the grid points in lat-lon space.

• In the global field arrays, latitude must be indexed from north to south. That is, the first
row of the array is the northernmost one. (Some flexibility might be introduced here in
the future.)

• The global grid must not have grid points at either of the poles. This restriction is not
expected to be permanent, and in the meantime can probably be overcome by moving the
location of the polar points to be fractionally short of the pole (e.g. at 89.9◦ and -89.9◦).

Initializing and calling

The easiest way to learn how Glint is used is by way of an example. Glint should be built
automatically as part of CISM, and we assume here that this has been done successfully.
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Typically, Glint will be called from the main program body of a climate model. (In CESM,
Glint subroutines are called from a wrapper layer called glc.) To make this possible, the compiler
needs to be told to use the Glint code, with “use” statements like the following:

use glint_main

The next task is to declare a variable of type glint params, which holds everything relating to
the model, including any number of ice-sheet instances:

type(glint_params) :: ice_sheet

Before the ice-sheet model may be called from the climate model, it must be initialized. This
can be done with the following subroutine call3:

call initialise_glint(ice_sheet,lats,lons,time_step,paramfile)

These are the required arguments; many optional arguments are also possible. The required
arguments are defined as follows:

• ice sheet is the variable of type glint params defined above;

• lats and lons are one-dimensional arrays giving the locations of the global grid-points
in latitude and longitude, respectively;

• time step is the intended interval between calls to Glint, in hours. This is known as the
forcing timestep.

• paramfile is the name of the Glint configuration file. The contents of this file are discussed
below.

If Glint is to be forced with an externally computed surface mass balance (rather than the
fields that would drive a PDD scheme), the climate model should instead call the subroutine
initialise glint gcm, which has the same required arguments but a different set of optional
arguments.

After Glint is initialised, it may be called as part of the main climate model time-step loop:

call glint(ice_sheet,time,temp,precip,orog)

where

• ice sheet is the variable of type glint params defined above;

• time is the current model time, in hours;

• temp is the daily mean 2m global air temperature field, in ◦C;

• precip is the global daily accumulated precipitation field, in mm (water equivalent, mak-
ing no distinction between rain, snow, etc.);

• orog is the global orography field, in m.

Many optional arguments may also be specified.
The latter three compulsory fields are needed to drive a PDD scheme. Glint includes two

such schemes. One of these calculates the mass-balance for the whole year (the annual PDD
scheme), while the other calculates on a daily basis (the daily PDD scheme). The annual scheme
incorporates a stochastic temperature variation to account for diurnal and other variations,
which means that if this scheme is used, Glint should be called such that short-term variations
have been removed. In practice, this means calling Glint on a monthly basis, with monthly
mean temperatures. For the daily scheme, no such restriction exists, and the scheme should be
called at least every 6 hours.

If the SMB is computed externally by a climate model, the call to Glint would resemble this
one:

3The spelling of some subroutine names reflects the British origins of the code.
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call glint_gcm(ice_sheet,time,qsmb,tsrf,topo)

where the last three arguments (all compulsory) are defined as follows:

• qsmb is the surface mass balance in kg m−2 s−1;

• tsrf is the surface ground temperature in ◦C, used as an upper thermal boundary con-
dition for the ice sheet; and

• topo is the surface elevation in m.

These fields contain two horizontal dimensions, along with a third dimension for elevation class.
CESM typically computes these quantities in 10 elevation classes per glaciated grid cell in the
climate model.

Among the optional arguments are the following output fields (returned by Glint to the
climate model):

• gfrac is the fractional grid cell area covered by ice;

• gtopo is the mean surface elevation in m;

• ghflx is the upwelling heat flux at the ice sheet surface, in W m2;

• grofi is the solid runoff flux (i.e., the calving flux) in kg m−2 s−1;

• grofl is the liquid runoff flux in kg m−2 s−1. This includes basal and possibly internal
melting, but not surface melting (which has already been computed by the climate model).

These fields are required by CESM to update its land-surface types and topography and to
conserve heat and water when CISM is coupled interactively to the climate model. The first
three fields are computed for each elevation class in each climate model grid cell, and the two
runoff fluxes are averaged over each grid cell. The initial “g” denotes that these fields have been
upscaled to the global climate grid.

Finishing off

After the desired number of time steps have been run, Glint may have some tidying up to do.
To do this, the subroutine end glint must be called:

call end_glint(ice_sheet)

Configuration

Glint uses the same configuration file format as the rest of CISM. If there is only one ice sheet
instance, all the configuration data for Glint and Glide (or Glissade) can reside in the same file.
If two or more instances are used, a top-level file specifies the number of model instances and
the name of a configuration file for each one. Configuration sections specific to Glint are as
follows:

[Glint]

Section specifying number of instances.
n instance (integer) Number of instances (default=1)

[Glint instance]

Specifies the name of an instance-specific configuration file. Unnecessary if we only have one
instance whose configuration data is in the main config file.

continued on next page
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continued from previous page

name Name of instance-specific config file (required).

[Glint climate]

Glint climate configuration
evolve ice specify whether or not the ice sheet evolves in time:

0 Do not evolve ice sheet (hold fixed in time). This setting is appro-
priate if we want to analyze the SMB downscaled to the observed
ice sheet geometry, without the complexity of evolution.

1 Allow the ice sheet to evolve
precip mode Method of precipitation downscaling:

1 Use large-scale precipitation rate
2 Use parameterization of Roe and Lindzen

acab mode Mass-balance model to use:
0 The surface mass balance is computed externally (e.g., by a cli-

mate model)
1 Annual PDD mass-balance model (Section 7.7.1)
2 Annual accumulation only
3 Hourly energy-balance model (NOTE: not supported)
4 Daily PDD mass-balance model (Section 7.7.2)

ice albedo Albedo of ice—may be used for coupling to climate model (default=0.4)
lapse rate Atmospheric temperature lapse-rate, used to correct the atmospheric

temperature onto the ice model orography. This should be positive for
temperature falling with height (Kkm−1) (default=8.0)

data lapse rate Atmospheric temperature vertical lapse rate, to be used in the calcula-
tion of temperature at sea level. The variable lapse rate is then used to
adjust the temperature to the surface of the local ice sheet topography.
If data lapse rate is not set, it is set to the value of lapse rate by
default.

ice tstep multiply Ice time-step multiplier: allows asynchronous climate-ice coupling. See
below for full explanation of Glint time-stepping. (default = 1)

mbal accum time Mass-balance accumulation time (in years, default is equal to mass-
balance timestep). See below for full explanation of Glint time-stepping.

Glint timestepping — an explanation

By default, the model accepts input on each forcing timestep (as specified in the call to
initialise glint). Input fields are accumulated over the course of a mass-balance time-
step, whereupon the mass-balance model is called. The output from the mass-balance model
is accumulated over the course of an ice sheet model time-step, and finally the ice sheet model
(Glide or Glissade) is called.

This default behaviour can be altered, in two ways:

1. The number of ice sheet time steps executed for each accumulated mass-balance field
may be increased—thus accelerating the ice sheet relative to the forcing. To do this, set
ice tstep multiply in the [Glint climate] config section; this must be an integer. This
acceleration is possible only if the mass balance is accumulated over an integer number of
years.

2. The mass-balance accumulation period can be altered by setting mbal accum time in the
[Glint climate] config section; this is a floating-point value in years.

The interaction of these two parameters is fairly complex, and permits sophisticated control
of how the ice sheet model is forced. Various checks are made at run-time to make sure that
sensible values are selected. Most importantly, all relevant time-steps must divide into one
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another appropriately. The model will (or should) stop if an un-sensible combination of values
is detected.

Glint timestepping — further examples

To aid understanding of the time-stepping controls, here are some examples. First, suppose we
have these time-step values:

forcing time-step: 6 hours
mass-balance time-step: 1 day
ice time-step: 0.5 year

By default, the model will accumulate 6 months of mass-balance calculations, and force the ice
sheet model based on the 6-month average. This might not be desirable, so you could set:

mbal_accum_time = 1.0

This would make Glint accumulate 1 year of mass-balance output before forcing the ice sheet
(at which point it would execute two ice sheet time-steps of 0.5 years each).

Having done that, you could accelerate the ice model by a factor of ten, by setting

ice_tstep_multiply = 10

In this scenario, 20 ice sheet time-steps of 0.5 years each would be done after each 12-month
accumulation of mass-balance data.

For the second example, we consider the contrasting situation where we do not want to
calculate a mass balance on all the available data (perhaps to save time). Consider these time-
step values:

forcing time-step: 6 hours
mass-balance time-step: 1 day
ice time-step: 10 years

(Clearly this is a numerically stable and/or low-resolution ice sheet). To avoid running the daily
PDD scheme c.3600 times (depending on the value of days in year), we can choose to use only
the first two years of data:

mbal_accum_time = 2.0

Glint accumulates the mass balance for 2 years, then waits for 8 years (ignoring incoming
data during this time) before calling the ice sheet. Ice sheet acceleration may be enabled with
ice tstep multiply as before.

7.6 Glint: Using glint-example

To run CISM using the Glint climate driver, go to directory tests/glint example and see the
README.md file. This file gives directions for downloading a tar file, glint-example.1.0.0.tar.gz,
that contains three data files used to force Glint:

• ncep-doe 6h climate.64x32.nc consists of 6-hourly precipitation and surface tempera-
ture data on a coarse global grid;

• orog.igcmgrid.64x32.nc consists of surface elevation data on a global grid (these data
are used to downscale temperature as a function of elevation); and
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• gland20.input.nc includes thickness and topography data for the Greenland ice sheet
on a 20-km mesh.

These files should be placed in directory tests/glint example. This directory already includes
the following config files:

• greenland 20km.config.pdd and greenland 20km.config.smb are ice sheet configura-
tion files for PDD and SMB forcing, respectively;

• glint example.config.pdd and glint example.config.smb are the corresponding cli-
mate configuration files.

To apply the PDD scheme, type

cism_driver greenland_20km.config.pdd glint-example.config.pdd

and to apply the SMB scheme, type

cism_driver greenland_20km.config.smb glint-example.config.smb

The 6-hourly temperature and precipitation data are tailored for a PDD scheme. The same data,
however, can also supply a crude surface mass balance and surface temperature in multiple
elevation classes, imitating the forcing from a climate model such as CESM. (Accumulation
is set equal to precipitation, and ablation is assumed to be linearly related to the downscaled
temperature. This scheme is convenient for testing but obviously is not appropriate for science.)
By default, two files are output at a specified frequency: a history file containing variables of
interest (e.g., thickness, velocity, and SMB) is output every 10 years, and a “hot” file containing
the variables required for exact restart is output every 1000 years.

7.7 Supplied mass-balance schemes

Users are free to supply their own mass-balance model for use with Glide. However, Glint
includes two positive-degree-day models for mass balance, one annual and one daily. This
section describes how to configure and call these models.

NOTE: CISM2 development has focused on CESM-style coupling where the SMB is com-
puted externally. The two PDD schemes (and the following description) are identical to those
in the original Glimmer code, but the schemes have not been extensively tested. Users should
proceed with caution.

7.7.1 Annual PDD scheme

The annual PDD scheme is contained in the f90 module glimmer pdd, and the model parameters
are contained in the derived type glimmer pdd params. Configuration data is contained in a
standard CISM config file, which needs to be read before initializing the mass-balance model.
The model is initialized by calling the subroutine glimmer pdd init, and the mass-balance may
be calculated annually by calling glimmer pdd mbal.

Example of use:

use glimmer_pdd

use glimmer_config

...

type(glimmer_pdd_params) :: pdd_scheme

type(ConfigSection),pointer :: config



7.7. SUPPLIED MASS-BALANCE SCHEMES 119

...

call glimmer_pdd_init(pdd_scheme,config)

...

call glimmer_pdd_mbal(pdd_scheme,artm,arng,prcp,ablt,acab)

In the subroutine call to glimmer pdd mbal, apart from the parameter variable pdd scheme,
there are three input fields (artm, arng and prcp), which are, respectively, the annual mean
air temperature, annual temperature half-range, and annual accumulated precipitation fields.
The final two arguments are output fields — annual ablation (ablt) and annual mass-balance
(acab). Temperatures are in degrees Celsius, and precipitation, ablation and mass-balance are
measured in m of water equivalent.

Degree-day calculation

The greater part of the information in the glimmer pdd params derived type comprises a look-up
table (the PDD table). The model is implemented this way for computational efficiency.

The table has two dimensions: mean annual air temperature (Ta) (as the second index) and
annual air temperature half range (i.e., from July’s mean to the annual mean ∆Ta) (as the first
index). Following Huybrechts and others [1991], daily air temperatures (T ′

a) are assumed to
follow a sinusoidal cycle

T ′
a = Ta +∆Ta cos

(
2πt

A

)
+R(0, σ) (7.1)

where A is the period of a year and R is a random fluctuation drawn from a normal distribution
with mean 0 ◦C and standard deviation σ ◦C. Huybrechts and others [1991] indicate that the
number of positive degree days (D, ◦C days) for this temperature series can be evaluated as

D =
1

σ
√
2π

A∫
0

T ′
a+2.5σ∫
0

Ta × exp

(
−(Ta − T ′

a)
2

2σ2

)
dTdt (7.2)

where t is time. The table is completed by evaluating this integral using a public-domain
algorithm (Romberg integration) by Bauer [1961]. The inner and outer integrals are coded as
two subroutines (inner integral and pdd integrand), which call the Romburg integration
recursively.

The main parameter needed is the assumed standard deviation of daily air temperatures,
which can be set in the configuration file (the default is 5 ◦C).

The positive-degree days are then looked up in the table (as a function of Ta and ∆Ta). We
take care to check that this look up is in done within the bounds of the table. The final value
of P is determined using bilinear interpolation given the four nearest entries in the table to the
actual values of Ta and ∆Ta.

The remainder of the loop completes the calculation of the ablation and accumulation given
this value for P .

Mass balance calculation

We use the following symbols: a is total annual ablation; as is potential snow ablation; b0 is the
capacity of the snowpack to hold meltwater by refreezing; the total number of positive degree
days (D); degree-day factors for snow and ice (fs and fi); and the fraction of snowfall that
can be held in the snowpack as refrozen meltwater (Wmax). The degree-day factors have been
converted from ice to water equivalents using the ratio of densities.
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First, determine the depth of superimposed ice (b0) that would have to be formed before
runoff (mass loss) occurs as a constant fraction (Wmax) of precipitation (P ):

b0 = WmaxP. (7.3)

Now determine the amount of snow melt by applying a constant degree-day factor for snow to
the number of positive degree-days:

as = fsD. (7.4)

We now compare the potential amount of snow ablation with the ability of the snow layer to
absorb the melt. Three cases are possible. First, all snow melt is held within the snowpack and
no runoff occurs (a = 0). Second, the ability of the snowpack to hold meltwater is exceeded but
the potential snow ablation is still less than the total amount of precipitation so that a = as−b0.
Finally, the potential snow melt is greater than the precipitation (amount of snow available),
so that ice melt (ai) has to be considered as well. The total ablation is therefore the sum
of snow melt (total precipitation minus meltwater held in refreezing) and ice melt (from the
total number of degree-days, deduct the number of degree-days needed to melt all snowfall and
convert to ice melt):

a = as + ai = P − b0 + fi

(
D − P

fs

)
. (7.5)

We now have a total annual ablation, and can find total net mass balance as the difference
between the annual precipitation and the annual ablation.

This methodology is fairly standard and stems from a series of Greenland papers by Huy-
brechts, Letreguilly and Reeh in the early 1990s.

Configuration

The annual PDD scheme is configured using a single section in the configuration file:

[GLIMMER annual pdd]

Specifies parameters for the PDD table and mass-balance calculation
dx Table spacing in the x-direction (◦C) (default=1.0)
dy Table spacing in the y-direction (◦C) (default=1.0)
ix Lower bound of x-axis (◦C) (default=0.0)
iy Lower bound of y-axis (◦C) (default=-50.0)
nx Number of values in x-direction (default=31)
ny Number of values in x-direction (default=71)
wmax Fraction of melted snow that refreezes (default=0.6)
pddfac ice PDD factor for ice (m day−1 ◦C−1) (default=0.008)
pddfac snow PDD factor for snow (m day−1 ◦C−1) (default=0.003)
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7.7.2 Daily PDD scheme

The other PDD scheme is a daily scheme. This is simpler than the annual scheme in that it
does not incorporate any stochastic variations. The mass balance is calculated on a daily basis,
given the daily mean temperature and half-range, and assuming a sinusoidal diurnal cycle.
Consequently, the firn model is more sophisticated than with the annual scheme, and includes
a snow-densification parameterization.

Configuration

The daily PDD scheme is configured using a single section in the configuration file:

[GLIMMER daily pdd]

Specifies parameters for the PDD table and mass-balance calculation
wmax Fraction of melted snow that refreezes (default=0.6)
pddfac ice PDD factor for ice (m day−1 ◦C−1) (default=0.008)
pddfac snow PDD factor for snow (m day−1 ◦C−1) (default=0.003)
rain threshold Temperature above which precipitation is held to be rain (◦C) (de-

fault=1.0)
whichrain Which method to use to partition precipitation into rain and snow:

1 Use sinusoidal diurnal temperature variation
2 Use mean temperature only

tau0 Snow densification timescale (s) (default=10 years)
constC Snow density profile factor C (m−1) (default=0.0165)
firnbound Ice-firn boundary as fraction of density of ice (default=0.872)
snowdensity Density of fresh snow (kgm−3) (default=300.0)
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Chapter 8

Test Cases

Test cases for CISM include experiments with analytic solutions, standardized experiments with-
out analytic solutions but for which community benchmarks are available, and some experiments
specific to CISM which have been well characterized by CISM developers.

Here we organize test cases based on the velocity solver that is most appropriate for each
test. Any velocity solver can be used with any test if the .config file settings are adjusted
manually. In some cases, however, the results may be difficult to interpret.

Each test directory includes a README.md file with some technical details about how to
run the test. Many tests have python scripts that are used to set up the initial condition and,
in some cases, execute the model. Some tests have an additional python script for analyzing
the CISM output.

The user must manually provide each test with access to the CISM executable. There are
several ways to do this:

• Softlink the executable into the directory, e.g.:

ln -s ../../../builds/mac-gnu/cism driver/cism driver ./

This is the recommended procedure during development so that the test will always be
using the most up-to-date version of the executable.

• Use the -e command line option to point to include an explicit path for the executable
(for test case run scripts that support this option), e.g.:

./runDome.py -e ../../../builds/mac-gnu/cism driver/cism driver

This is useful for quickly trying a different version of CISM (e.g., comparing serial and
parallel executables).

• Add the directory containing the CISM executable to your environment PATH.

• Copy the executable into the directory. This is typically not the most efficient approach,
but may make sense in some situations.

The python scripts generally have useful command line options that control their execution.
Typically, you can see details by using the --help (or -h) command line option, e.g.:

./runDome.py --help

The various tests are described below.

8.1 Shallow-Ice Test Cases

These tests are primarily useful for testing the shallow-ice approximation (SIA) dynamical core,
Glide (see Chapter 4). The Glissade dycore also has a shallow-ice option (see Section 6.2.2).

123
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8.1.1 Halfar dome

The Halfar test case describes the time evolution of a parabolic dome of ice, as described by
Halfar (1983). For a flat-bedded SIA problem, this case has an analytic solution for the time
varying ice thickness. We start with the general SIA ice evolution equation,

∂H

∂t
= ∇ · (ΓHn+2|∇H|n−1∇H), (8.1)

where n is the exponent in the Glen flow law, commonly taken as 3, and Γ is a positive constant:

Γ =
2

n+ 2
A(ρg)n. (8.2)

For n = 3, the time-dependent solution is
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and H0, R0 are the central height of the dome and its radius at time t = t0. For more details,
see Halfar (1983), Bueler et al. (2005), and this link1.

Provided files

Our implementation of the Halfar dome test has an initial radius of R0 = 21.2 km and an initial
thickness of H = 707.1 m. These values can be changed by editing the halfarDome function in
runHalfar.py.

• README.md
Information about the test case, including technical details about running it.

• halfar.config
This is the config file defining CISM options. It is set up to run Glide.

• halfar-HO.config
This alternative config file is set up to run Glissade using the Blatter-Pattyn approximation
of Stokes flow. By manually setting which ho approx under [ho options], users can
choose other approximations (see Section 7.3).

• runHalfar.py
This python script generates the dome initial condition and runs CISM.

• halfar results.py
This script compares model results to the analytic solution.

1http://www.projects.science.uu.nl/iceclimate/karthaus/2009/more/lecturenotes/EdBueler.pdf

http://www.projects.science.uu.nl/iceclimate/karthaus/2009/more/lecturenotes/EdBueler.pdf
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Running the test

One script sets up the initial condition and runs the model:
./runHalfar.py

Note that to run the test with the halfar-HO.config settings, you can use the -c comman-
dline option for specifying a configuration file:

./runHalfar.py -c halfar-HO.config

Another script analyzes and plots the results:
./halfar results.py

Results

With the default .config settings, this simulation should only take a few seconds and is a good
first test for a working Glide dycore. With Glissade, the Blatter-Pattyn option takes a few
minutes, but the SIA and L1L2 settings are much faster. As the dome of ice evolves, its margin
advances and its thickness decreases (there is no surface mass balance to add new mass). The
script halfar results.py will plot the modeled and analytic thickness at a specified time
(Figure 8.1), and also report error statistics. Invoke halfar results.py --help for details on
its use.
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Figure 8.1: Halfar test case results (using Glide) after 200 years of dome evolution. This figure
is generated by halfar results.py.
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8.1.2 EISMINT-1

This test case is from phase 1 of the European Ice Sheet Modelling INiTiative intercomparison
experiments. These experiments are described in more detail here2 and in Huybrechts et al.
(1996).

Provided files

• README.md
Information about the test case, including technical details about running it.

• *.config
There are .config files for each of the six experiments in EISMINT 1: three fixed margin
experiments (fm) and three moving margin experiments (mm).

Running the test

There is no script for running these experiments. They are simply run manually, e.g. using:

./cism driver e1-fm.1.config

Results

These experiments are meant to be run to steady-state, and the supplied .config files are set
up to run for long enough to do this. These simulations take more than a few minutes to
complete. As the ice sheet evolves, its shape eventually equilibrates with the imposed surface
mass balance. Currently there is no script for analyzing the model results. However, users can
visually compare their results to those in Huybrechts et al. (1996).

8.1.3 EISMINT-2

This test case is from phase 2 of the European Ice Sheet Modelling INiTiative intercomparison
experiments. These experiments are described in more detail here3 and in Payne et al. (2000).

Provided files

• README.md
Information about the test case, including technical details about running it.

• *.config
There are 11 .config files: one for each of the experiments described in Payne et al. (2000).

• mound.nc, trough.nc
These are input netCDF files used by the EISMINT-2 experiments.

Running the test

There is no script for running these experiments. They are run manually, e.g. using:

./cism driver e2.a.config

2http://homepages.vub.ac.be/˜phuybrec/eismint.html
3http://homepages.vub.ac.be/˜phuybrec/eismint.html

http://homepages.vub.ac.be/~phuybrec/eismint.html
http://homepages.vub.ac.be/~phuybrec/eismint.html
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Results

These experiments are meant to be run to steady-state, and the supplied .config files are set up
to run for long enough to do this. Some experiments use the final state of a previous experiment
as the initial condition (e.g., most experiments following experiment A use the final state from
A as an initial condition). See the experimental descriptions in Payne et al. (2000) for details.
These simulations take more than a few minutes to complete. As the ice sheet evolves, its shape
equilibrates with the imposed surface mass balance. There is no script for analyzing model
results, but users can visually compare their results to those in Payne et al. (2000), and also
compare model diagnostics (e.g., ice area, volume, and maximum thickness) to Table 4 of that
paper.

8.1.4 Glint example

Section 7.6 explains how to set up and run the Glint example test case. We summarize that
information here.

Provided files

• README.md
Information about the test case, including technical details about downloading the re-
quired data files and running the case.

• greenland 20km.config.pdd and glint example.config.pdd
These config files are used to run Glide with the surface mass balance computed by Glint’s
positive-degree-day scheme.

• greenland 20km.config.smb and glint example.config.smb
These config files are used to run Glide with the surface mass balance passed directly to
Glint. (In real applications the SMB would be provided by a climate model, but here it
is crudely approximated from temperature and precip data.)

• ncep-doe 6h climate.64x32.nc, orog.igcmgrid.64x32.nc, gland20.input.nc
These are data files that must be downloaded and placed in the glint example test
directory by the user. Users may also supply their own input data.

Running the test

There is no script for running these experiments. They are run manually, e.g. using:
./cism driver greenland 20km.config.pdd glint example.config.pdd

The two config files specify the ice sheet and climate configurations, respectively.

Results

The config files are set up to run Glide on a coarse Greenland grid for 10 model years, so that
the default experiments complete quickly. The results are written to netCDF files. This test
illustrates the application of CISM to a whole ice sheet but is not expected to be scientifically
accurate.

8.2 Higher-Order Test Cases

The higher-order test cases are designed to test various aspects of higher-order dycores. By
default they use the Glissade dycore with the Blatter-Pattyn approximation (see Section 6.2.1).
As other higher-order dycores become available, they can be applied to these same tests. Ad-
ditional test cases will be added as needed.
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8.2.1 Dome

The dome test case is based on a parabolic dome of ice, similar to the Halfar test case. By
default the dome has the same radius and center thickness as the Halfar case. However, it uses
a simple square root function to define thickness as a function of distance from the dome center,
resulting in a somewhat steeper profile. The dome test has been widely used for day-to-day
testing because it is simple and relatively fast to run. It is a good test to confirm that basic
higher-order model physics is working correctly, but does not strenuously test the physics and
boundary conditions, or analytically verify the model.

Provided files

• README.md
Information about the test case, including technical details about running it.

• runDome.py
The script to set up and run the test.

• dome.config
The default configuration settings for running CISM with the test case.

• dome-forcing.config
An example configuration script that can be used to generate a forcing file and run CISM
with it.

Running the test

One script sets up the initial condition and runs the model:
./runDome.py

There is no script for analyzing the results.
The dome test case can also be used to set up an example of CISM’s time-dependent forcing

capability. (See Section 7.4 for details.) By passing the runDome.py script a config file which
has [CF Forcing] section, as found in dome-forcing.config, it will generate a dome.forcing.nc file
that contains time-varying fields and then run CISM using this generated netCDF file. Run:

./runDome.py -c dome-forcing.config

Results

There is not an analytic solution for this test, nor is there a script to analyze the results. You
can manually inspect the results using a tool such as ncview.4 Sample output is shown in Figure
8.2.

4See section 2.2.4
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Figure 8.2: Dome velnorm (i.e., the ice speed in m/yr) field at time 0 using default dome.config
settings. This figure is a screenshot of ncview.
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8.2.2 ISMIP-HOM

The Ice Sheet Model Intercomparison Project for Higher-Order Models (ISMIP-HOM) pre-
scribes a set of experiments for testing the implementation of higher-order physics. For more
information, see here5 and the ISMIP-HOM description paper by Pattyn et al. (2008).

The python scripts provided (runISMIP HOM.py and plotISMIP HOM.py, referred to here
as the ISMIP-HOM scripts) were created to run experiments A through F using CISM and
compare the results with results from other models.

Note: The README.md file gives many additional details about running and analyzing the
test case that are not described here.

Provided files

• README.md
Information about the test case, including technical details about running it.

• ismip-hom.config
A default configuration file used as a template for generating the .config file for each test.
If you wish to run the tests with different solver settings, for example, you should edit
this file.

• runISMIP HOM.py
The script used for running any/all of the ISMIP-HOM experiments. Invoke with ‘--help’
to see the many command line options for controlling execution.

• plotISMIP HOM.py
The script used for analyzing/plotting any/all of the ISMIP-HOM experiments. Invoke
with ‘--help’ to see the many command line options for controlling execution.

Running the test

One script sets up the initial condition and runs the model:
./runISMIP HOM.py

and another is used to analyze the results:
./plotISMIP HOM.py

Results

The plotISMIP HOM.py script will plot results relative to other models. None of the ISMIP-
HOM tests have a useful analytic solution, so these tests are used as community benchmarks
rather than actual model verification tests. The Pattyn et al. (2008) paper is useful for intepret-
ing model results. An example output plot is shown in Figure 8.3.

5http://homepages.ulb.ac.be/˜fpattyn/ismip/

http://homepages.ulb.ac.be/~fpattyn/ismip/
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Figure 8.3: An example of the ISMIP-HOM test case output for test A at size L=160 km.
CISM output is shown with a black line, and the range of output from other models is shown by
colored bars. This figure was generated with ./plotISMIP HOM.py -e a -s 160 after running
the test with ./runISMIP HOM.py -e a -s 160. Additional options (e.g., running and plotting
for multiple tests simultaneously) are described in the README.md and by invoking the ‘--help’
option at the command line.
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8.2.3 Stream

The stream test case simulates flow over an idealized ice stream underlain by a subglacial till
with a known and specified yield stress distribution (see discussion in Section 5.3). For the
two yield stress distributions specified in this test case, analytical solutions are available from
Raymond (2000) and Schoof (2006).

For the Raymond test case, the yield stress within the ice stream is given a uniform value
below the driving stress, and outside the ice stream it is given a uniform value much higher
than the driving stress (i.e., the yield stress distribution is approximated by a step function).
For the Schoof test case, the till yield stress across the ice stream is given by a continuously
varying function.

In both cases, the basal properties vary in the across-flow direction only and are symmetric
about the ice stream centerline. As a result, the velocity solutions are also uniform along flow
and symmetric about the centerline.

Provided files

• README.md
Information about the test case, including technical details about running it.

• runStream.py
The script to set up and run the test.

• stream.config
The default configuration settings for running CISM with the test case. Note that this file
is parsed by the runStream.py script. Most of the relevant options that might be changed
for this test case (e.g., grid spacing) can be done so from the command line, without
having to edit the .config files (use ./runStream.py --help for a description of available
options). The choice of yield stress distribution (Raymond or Schoof) can be toggled by
editing line 122 of runStream.py.

Running the test

One script sets up the initial condition and runs the model:
./runStream.py

and another is used to analyze the results:
./plotStream.py

Results

The plotStream.py script will plot model output relative to the analytical solutions in Raymond
(2000) and Schoof (2006). The choice of analytical solution for comparison is automatic, based
on the yield stress chosen in the runStream.py script. Figure 8.4 shows example output for both
test cases.

Note: The excellent agreement between the CISM results and the Raymond analytical solu-
tion requires setting which ho assemble beta = 1 in the config file (see Section 7.3). With this
setting, the step change in yield stress is well resolved. Otherwise there is some smoothing of
the traction parameter β over neighboring nodes during finite-element assembly (Section 6.2.1),
and the results are less accurate.

8.2.4 Confined shelf

The confined shelf test is based on tests 3 and 4 of the idealized (i.e., not Ross) EISMINT
shelf test cases. It simulates the flow within an idealized, 500 m thick ice shelf in a confined,
rectangular embayment. Grounded ice is not explicitly modeled but included in the model
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setup as Dirichlet boundary conditions for velocity along the ice shelf edges. More detailed
information on this test case can be found here 6 in the “shelf-descr.pdf” document.

Note that the confined shelf and circular shelf experiments are both in the tests/higher-order/shelf
directory and share some files.

Provided files

• README.md
Information about the test case, including technical details about running it.

• runShelfConfined.py
The script to set up and run the test.

• shelf-confined.config
The default configuration settings for running CISM with the test case.

Running the test

One script sets up the initial condition and runs the model:
./runShelfConfined.py

Results

There is no script for analyzing the results. See the URL above for information about assessing
the model output. You can manually inspect the results using a tool such as ncview. Figure
8.5 shows an example.

6http://homepages.vub.ac.be/˜phuybrec/eismint/iceshelf.html

http://homepages.vub.ac.be/~phuybrec/eismint/iceshelf.html
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Figure 8.4: Comparison between CISM model output (black) and analytic solution (red) for
the Raymond (top) and Schoof (bottom) stream test cases. This figure was generated with
./plotStream.py after running the test with ./runStream.py. Additional runtime options are
described in the README.md and by invoking the ‘--help’ option at the command line.
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Figure 8.5: Confined shelf velnorm field using default shelf-confined.config settings. This
figure is a screenshot of ncview.
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8.2.5 Circular shelf

The circular shelf test case is a variant on the confined shelf discussed above. It simulates the
flow within a circular ice shelf with a uniform thickness of 1000 m, which is grounded at a single
grid point at its center. This test case confirms a working “floating ice” boundary condition in
2D (i.e., in map plane view) and also confirms radial symmetry.

Note that the confined shelf and circular shelf experiments are both in the tests/higher-order/shelf
directory and share some files.

Provided files

• README.md
Information about the test case, including technical details about running it.

• runShelfCircular.py
The script to set up and run the test.

• shelf-circular.config
The default configuration settings for running CISM with the test case.

Running the test

One script sets up the initial condition and runs the model:
./runShelfCircular.py

Results

There is no script for analyzing the results. You can manually inspect the results using a tool
such as ncview. Figure 8.6 shows an example.
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Figure 8.6: Circular shelf velnorm field using default shelf-circular.config settings. This
figure is a screenshot of ncview.
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8.2.6 Ross Ice Shelf

The Ross experiment is designed to simulate the flow of the Ross Ice Shelf of Antarctica under
idealized conditions (e.g., constant and uniform flow-law rate factor). For more information
about the experiment and its results, see here7. Also, see MacAyeal et al. (1996) for a discussion
of the official model intercomparison results.

Using the Glissade solver with the Blatter-Pattyn approximation, this experiment typically
takes about 10 minutes to run on a single processor. Using the shallow-shelf approximation
instead, the results are very similar and are found more quickly (in less than a minute). For
this reason, the SSA (which ho approx = 1) is the default.

Provided files

• README.md
Information about the test case, including technical details about running it.

• runRoss.py
The script to set up and run the test.

• ross.config
The default configuration settings for running CISM with the test case.

• plotRoss.py
The script to plot the test results.

Running the test

One script sets up the initial condition and runs the model:
./runRoss.py -r

(Without the “-r” flag, the script will set up the initial condition but not run CISM.) Another
script can be used to visualize the results:

./plotRoss.py

Results

The plotRoss.py script will generate a figure of the velocity field calculated for the Ross Ice
Shelf. The results should look very similar to Figures 8.7 and 8.8. You can compare these with
similar figures in the paper by MacAyeal et al. (1996).

7http://homepages.vub.ac.be/˜phuybrec/eismint/iceshelf.html

http://homepages.vub.ac.be/~phuybrec/eismint/iceshelf.html
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Figure 8.7: Ross Ice Shelf velocity field calculated by CISM. This figure is generated by
plotRoss.py.

Figure 8.8: CISM-modeled Ross Ice Shelf speeds vs. those from observations. This figure is
generated by plotRoss.py.
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8.2.7 Other tests

Other higher-order tests that are still in development (e.g., “slab”) are also included in the
./tests/higher-order/ directory. Instructions for running these tests are included in each
directory. Since these tests have not yet been validated, they are for use at your own risk.

8.3 The build and test structure (BATS)

A build and test structure (BATS) has been included in the ./tests/regression/ directory.
BATS is capable of automatically building CISM and then running a set of regression tests on
a number of platforms. BATS is primarily intended to allow users and developers of CISM to
quickly generate a set of regression tests for use with the Land Ice Verification and validation
toolkit(LIVVkit) 8. This allows users to quickly and easily build confidence in their installation
of CISM and, by extension, their scientific results.

Provided files

• README.md
Information about the build and test structure, including technical details about using it.

• build and test.py

The main script to build CISM, and run a set of regression tests.

• setup hopper.bash and setup titan.bash

Scripts to load the needed modules on the higher-performance-computing architectures
Hopper (NERSC) and Titan (OLCF).

• util/

A directory containing a set of helper python modules and files for build and test.py.

Using BATS

BATS works very similar to how you would build CISM and run one or more CISM tests. BATS
will build a version of CISM, and then either run a set of regression tests if you are using a
personal computer (PC), or setup a series of regression tests and generate a job submission
script if you are using a high-performance-computing architecture (HPC).

For example, on the HPC Titan, if you wanted to build CISM using the gnu compiler, and
run a set of regression tests, you would run these commands:

cd tests/regression/

source setup_titan.bash

./build_and_test.py -p titan -c gnu -b ./build

which will result in BATS generating all the CMake build files into a new directory called
build and building CISM into the directory build/cism driver. BATS will then setup a set
of CISM’s higher-order tests:

• Dome (at a variety of resolutions and processor counts)

• Circular and confined shelf

• ISMIP-HOM a and c (at 20 and 80 km resolutions)

• ISMIP-HOM f

8https://github.com/LIVVkit/LIVVkit

https://github.com/LIVVkit/LIVVkit
https://github.com/LIVVkit/LIVVkit
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• Stream

All the files associated with each test will be output to a new directory called reg test/titan-gnu,
which has a directory structure that mirrors CISMS test directory structure:

reg_test/

PLATFORM-COMPILER/

CMakeCache.txt

higher-order/

dome/

dome.RESO.pPRC.*

timing/

dome-t?.RESO.pPRC.*

ismip-hom

ismip-hom-a.RESO.pPRC.*

ismip-hom-c.RESO.pPRC.*

ismip-hom-f.0100.pPRC.*

shelf

shelf-circular.RESO.pPRC.*

shelf-confined.RESO.pPRC.*

stream

stream.RESO.pPRC.*

--------------------------------------------

Jobs/

platform_job.small

platform_job.small_timing_?

platform_job.large

platform_job.large_timing_?

submit_all_jobs.bash

clean_timing.bash

where * and ? are POSIX regular expressions metacharacters, RESO is a number indicating the
resolution the test was run at (the meaning of the number is test dependent), and pPRC is a
number, prefixed by a p, indicating the number of processors used when running the model.
This reg test directory will be formatted to used with LIVVkit directly. Note: everything
below the dashed line will only appear on HPC systems (tests are immediately run on PCs).
submit all jobs.bash will submit all the jobs in the jobs/ directory and clean timing.bash

will clean out any higher-order/*/timing/ directory such that only the timing files remain
(to be used after all jobs finish).

Advanced usage

BATS is designed to be flexible and work with any LIVVkit usage scenario. In order to do that,
BATS provides a number of options to configure which system you are using, when/where/how
CISM is built, the destination of the output directory, and which tests are run. For more
information, see the LIVVkit wiki 9.

9https://github.com/LIVVkit/LIVVkit/wiki

https://github.com/LIVVkit/LIVVkit/wiki
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Appendix A

NetCDF Variables

The following list shows all the netCDF variable names used by CISM. Only variables marked
with ∗ are loaded (if present) by the input routines.

A.1 Glide/Glissade Variables

Name Description Units

level sigma layers 1
CF name: land ice sigma coordinate

lithoz vertical coordinate of lithosphere layer meter
staglevel stag sigma layers 1

CF name: land ice stag sigma coordinate

stagwbndlevel stag sigma layers with boundaries 1
CF name: land ice stag sigma coordinate with bnd

x0 Cartesian x-coordinate, velocity grid meter
x1∗ Cartesian x-coordinate meter
y0 Cartesian y-coordinate, velocity grid meter
y1∗ Cartesian y-coordinate meter
acab∗ accumulation, ablation rate meter/year

CF name: land ice surface specific mass balance

adv cfl dt advective CFL maximum time step years
artm∗ annual mean air temperature degree Celsius

CF name: surface temperature

beta∗ higher-order bed stress coefficient Pa yr/m
bfricflx∗ basal friction heat flux watt/meter2
bheatflx∗ upward basal heat flux watt/meter2
bmlt∗ basal melt rate meter/year

CF name: land ice basal melt rate

btemp basal ice temperature degree Celsius
CF name: land ice temperature

btractx basal traction (x-direction comp) Pa
btracty basal traction (y-direction comp) Pa
btrc basal slip coefficient meter/pascal/year

continued on next page
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continued from previous page

Name Description Units

bwat∗ basal water depth meter
bwatflx basal water flux meter3/year
calving ice margin calving meter
diff cfl dt diffusive CFL maximum time step years
diffu apparent diffusivity meter2/year
dissip dissipation divided by rhoi Ci deg C
dthckdtm tendency of ice thickness (NOTE: Glide only) meter/year
dusrfdtm rate of upper ice surface elevation change (NOTE:

Glide only)
meter/year

dynbcmask 2d array of higher-order model boundary condition
mask values (NOTE: Glam ONLY)

1

effecpress∗ effective pressure Pa
efvs∗ effective viscosity Pascal * years
eus global average sea level meter

CF name: global average sea level change

flwa∗ Pre-exponential flow law parameter pascal**(-n) year**(-1)
flwastag∗ Pre-exponential flow law parameter pascal**(-n) year**(-1)
gravity gravitational acceleration meter/s/s

CF name: gravity
iarea area covered by ice km2
iareaf area covered by floating ice km2
iareag area covered by grounded ice km2
ice mask real-valued mask denoting ice (1) or no ice (0) 1
ice specific heat ice specific heat J/kg/K

CF name: ice specific heat

ice thermal conductivity ice thermal conductivity J/(K kg)
CF name: ice thermal conductivity

ivol ice volume km3
kinbcmask∗ Mask of locations where uvel, vvel value should be

held
1

litho temp∗ lithosphere temperature degree Celsius
lsurf ice lower surface elevation meter
relx∗ relaxed bedrock topography meter
resid u u component of residual Ax - b (NOTE: Glam only) Pa/m
resid v v component of residual Ax - b (NOTE: Glam only) Pa/m
rho ice ice density kg/meter3

CF name: rho ice

rho seawater seawater density kg/meter3
CF name: rho seawater

rhs u u component of b in Ax = b Pa/m
rhs v v component of b in Ax = b Pa/m
seconds per year seconds per year s/yr

CF name: seconds per year

soft∗ bed softness parameter meter/pascal/year
stagthk staggered ice thickness meter

CF name: stag land ice thickness

continued on next page
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continued from previous page

Name Description Units

surftemp∗ annual mean surface temperature degree Celsius
CF name: surface temperature

tau eff∗ effective stress Pa
tau xx x component of horiz. normal stress Pa
tau xy horiz. shear stress Pa
tau xz X component vertical shear stress Pa
tau yy y component of horiz. normal stress Pa
tau yz Y component vertical shear stress Pa
tauf∗ higher-order basal yield stress Pa
taux basal shear stress in x direction (NOTE: Glide only) kilopascal
tauy basal shear stress in y direction kilopascal
temp∗ ice temperature degree Celsius

CF name: land ice temperature

tempstag∗ ice temperature on staggered vertical levels with
boundaries

degree Celsius

CF name: land ice temperature stag

thk∗ ice thickness meter
CF name: land ice thickness

thkmask∗ mask 1
topg∗ bedrock topography meter

CF name: bedrock altitude

ubas∗ basal slip velocity in x direction meter/year
CF name: land ice basal x velocity

uflx flux in x direction (NOTE: Glide and Glam only) meter2/year
unstagbeta∗ higher-order bed stress coefficient on the unstaggered

grid (NOTE: this will overwrite beta if both are in-
put)

Pa yr/m

usurf∗ ice upper surface elevation meter
CF name: surface altitude

uvel∗ ice velocity in x direction meter/year
CF name: land ice x velocity

uvel extend ice velocity in x direction (extended grid) meter/year
CF name: land ice x velocity

vbas∗ basal slip velocity in y direction meter/year
CF name: land ice basal y velocity

velnorm Horizontal ice velocity magnitude meter/year
vflx flux in x direction (NOTE: Glide and Glam only) meter2/year
vvel∗ ice velocity in y direction meter/year

CF name: land ice y velocity

vvel extend ice velocity in y direction (extended grid) meter/year
CF name: land ice y velocity

wgrd∗ Vertical grid velocity meter/year
wvel∗ vertical ice velocity meter/year
wvel ho∗ vertical ice velocity relative to ice sheet base from

higher-order model (NOTE: Glam only)
meter/year
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A.2 Glint Variables

Name Description Units

ablt ablation meter (water)/year
arng air temperature half-range degreeC
global orog orographic elevation provided by global model meter

CF name: surface altitude

hflx tavg∗ heat flux to ice surface W m-2
inmask downscaling mask 1
local orog orographic elevation provided by local model meter

CF name: surface altitude

outmask∗ upscaling mask 1
prcp precipitation meter (water)/year

CF name: lwe precipitation rate

rofi tavg∗ solid calving flux kg m-2 s-1
rofl tavg∗ liquid runoff flux kg m-2 s-1
siced∗ superimposed ice depth meter
snowd∗ snow depth meter

CF name: surface snow thickness



Appendix B

Input and Output (I/O)

B.1 NetCDF I/O

The netCDF1 library is used for platform-independent, binary file I/O. CISM uses the f90
netCDF interface. Several source files are automatically generated from template files and a
variable definition file using a python script. The netCDF files adhere to the CF convention2 for
naming climate variables. The netCDF files also store parameters used to define the geographic
projection.

B.1.1 Data structures

Information associated with each dataset is stored in the glimmer nc stat type. Variable and
dimension IDs are retrived from the data set by using the relevant netCDF library calls. Meta-
data (such as title, institution and comments) are stored in the derived type glimmer nc meta.

Input and output files are managed by two separate linked lists. Elements of the input file
list contain the number of available time slices and information describing which time slice(s)
should be read. Output file elements describe how often data should be written and the current
time.

B.1.2 Code generator

Much of the code needed to do netCDF I/O is repetitive and can therefore be automatically
generated. The code generator, generate ncvars.py, is written in python and produces source
files from a template ncdf template.in and the variable definition file (Section B.1.3). The
templates are valid source files; the generator simply replaces special comments with the code
generated from the variable file.

B.1.3 Variable definition file

All netCDF variables are defined in control files, MOD vars.def, where MOD is the name of
the model subsystem. Variables can be modified/added by editing these files to provide I/O
functionality for additional variables beyond those listed in Appendix A. A common example
would be to modify the file glide vars.def in ./libglide so that additional standard variables
can be treated as “loadable” on input, or so that other standard variables internal to the code
can be written to NetCDF output. Note that if MOD vars.def is modified, the CMake configure
script must be re-sourced before running “make” in order for those changes to be applied.

1http://www.unidata.ucar.edu/packages/netcdf/
2http://cfconventions.org/
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The file is read using the python ConfigParser module. The format of the file is similar
to Windows .ini files. Lines beginning with # or ; or empty lines are ignored. These files
must have a definition section [VARSET] (see Table B.1). A new variable definition block starts
with the variable name in square brackets [ ]. Variables are further specified by parameter
name/value pairs which are separated by : or =. Parameter names and their meanings are
summarized in Table B.2. All parameter names not recognised by the code generator (i.e., not
in Table B.2) are added as variable attributes.

name description

name Name of the model subsystem, e.g. glide. The f90 file is renamed
based on this name. The f90 module and module procedures are
prefixed with this name.

datatype The name of the f90 type on which the netCDF variables depend.
datamod The name of the f90 module in which the f90 type, datatype, is

defined.

Table B.1: Each variable definition file must have a section, called [VARSET], containing the
parameters described above.

name description

dimensions List of comma-separated dimension names of the variable. C no-
tation is used here, i.e. the slowest-varying dimension is listed
first.

data The variable to be stored/loaded. The f90 variable is assumed
to be one dimension smaller than the netCDF variable, i.e. f90
variables are always snapshots of the present state of the model.
Variables which do not depend on time are not handled automat-
ically. Typically, these variables are filled when the netCDF file
is created.

factor Variables are multiplied with this factor on output and divided by
this factor on input. Default: 1.

load Set to 1 if the variable can be loaded from file. Default: 0.
average Set to 1 if the variable should also be available as a mean over the

write–out interval. Averages are calculated only if required. To
store the average in a netCDF output file, append tavg to the
variable name.

units UDUNITS compatible unit string describing the variable units.
long name A more descriptive name of the variable.
standard name The corresponding standard name defined by the CF standard.

Table B.2: List of accepted variable definition parameters.



Appendix C

Commonly Used Notation

The following table is a partial list of the notation for commonly used variables in this document.

Symbol Variable

H ice thickness
s ice surface elevation
b ice bottom elevation
br bedrock elevation
Bs surface mass balance (positive for accumulation)
Mb basal melt rate (positive for melt)
B combined surface and basal mass balance
u x-component of ice velocity
v y-component of ice velocity
w z-component of ice velocity
η effective viscosity
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